Towards Key Principles of Fact Based Thinking

  • Stijn HoppenbrouwersEmail author
  • Henderik A. Proper
  • Maurice Nijssen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11231)


In this paper, we present ten principles that, in our view, underlie and define the practice and science of ‘Fact Based Thinking’. In itself, Fact Based Thinking underpins Fact Based Modelling (FBM) in all its forms. FBM has been around for decades, and has brought forth a number of meta-models and formalizations. The principles as discussed in this paper focus on Fact Based Thinking rather than on matters of representation and precise semantics, which have been elaborately discussed elsewhere. The principles presented are deliberately worded for broad use and inspirational purposes, rather than worked out in detail. As such, this paper suggests the initialization of further work rather than presenting a final result. The sketch of the principles presented aims to express the basics of Fact Based Thinking in a way that most members of the FBM community can feel at home with.


Fact Based Modelling Fact Based Thinking Conceptual modelling Knowledge engineering Information systems 


  1. 1.
    Nijssen, G.M., Halpin, T.A.: Conceptual Schema and Relational Database Design: A Fact Oriented Approach. Prentice Hall, Englewood Cliffs (1989). ISBN 0-13-167263-0Google Scholar
  2. 2.
    Halpin, T.A., Morgan, T.: Information Modeling and Relational Databases. Data Management Systems, 2nd edn. Morgan Kaufman (2008). ISBN 978-0-123-73568-3Google Scholar
  3. 3.
    Zwart, J.P., Engelbart, M., Hoppenbrouwers, S.J.B.A.: Fact Oriented Modeling with FCO-IM: Capturing Business Semantics in Data Models with Fully Communication Oriented Information Modeling. Technics Publications (2015). ISBN 978-1634620864Google Scholar
  4. 4.
    Proper, H.A., Bleeker, A.I., Hoppenbrouwers, S.J.B.A.: Object-role modelling as a domain modelling approach. In: Grundspenkis, J., Kirikova, M. (eds.) Proceedings of the Workshop on Evaluating Modeling Methods for Systems Analysis and Design (EMMSAD 2004), Held in Conjunction with the 16th Conference on Advanced Information Systems 2004 (CAiSE 2004), Faculty of Computer Science and Information Technology, Riga, Latvia, June 2004, vol. 3, pp. 317–328 (2004). ISBN 9-984-97671-8Google Scholar
  5. 5.
    Ogden, C.K., Richards, I.A.: The Meaning of Meaning - A Study of the Influence of Language upon Thought and of the Science of Symbolism. Magdalene College, University of Cambridge, Oxford (1923)Google Scholar
  6. 6.
    ISO/IEC JTC 1/SC 32 Technical Committee on Data management and interchange. Information processing systems - Concepts and Terminology for the Conceptual Schema and the Information Base. Technical report ISO/TR 9007:1987, ISO, 1987Google Scholar
  7. 7.
    Bowkerm, G.C., Star, S.L.: Sorting Things Out, Classification and its Consequences. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Spyns, P.: Object role modelling for ontology engineering in the DOGMA framework. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2005. LNCS, vol. 3762, pp. 710–719. Springer, Heidelberg (2005). Scholar
  9. 9.
    Brinkkemper, S., Saeki, M., Harmsen, A.F.: Meta-modelling based assembly techniques for situational method engineering. Inf. Syst. 24(3), 209–228 (1999). ISSN 0306-4379CrossRefGoogle Scholar
  10. 10.
    Bjeković, M., Proper, H.A., Sottet, J.-S.: Embracing pragmatics. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 431–444. Springer, Cham (2014). Scholar
  11. 11.
    Sandkuhl, K., et al.: From expert discipline to common practice: a vision and research agenda for extending the reach of enterprise modeling. Bus. Inf. Syst. Eng. 60(1), 69–80 (2018)CrossRefGoogle Scholar
  12. 12.
    Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (meta)models. In: Vasilecas, O., Eder, J., Caplinskas, A. (eds.) Databases and Information Systems IV - Selected Papers from the Seventh International Baltic Conference, DB&IS 2006. Frontiers in Artificial Intelligence and Applications, 3–6 July 2006, Vilnius, Lithuania, vol. 155, pp. 18–39. IOS Press (2006). ISBN 978-1-58603-715-4Google Scholar
  13. 13.
    Semantics of Business Vocabulary and Rules (SBVR). Technical report dtc/06–03-02, Object Management Group, Needham, Massachusetts, March 2006Google Scholar
  14. 14.
    Campbell, L.J., Halpin, T.A., Proper, H.A.: Conceptual schemas with abstractions - making flat conceptual schemas more comprehensible. Data Knowl. Eng. 20(1), 39–85 (1996)CrossRefGoogle Scholar
  15. 15.
    ISO/IEC/IEEE. Systems and software engineering - Architecture description is an international standard for architecture descriptions of systems and software. Technical report ISO/IEC 42010, ISO, July 2011Google Scholar
  16. 16.
    Proper, H.A., Hoppenbrouwers, S.J.B.A., Veldhuijzen van Zanten, G.E.: Communication of enterprise architectures. Enterprise Architecture at Work. TEES, 4th edn, pp. 59–72. Springer, Heidelberg (2017). Scholar
  17. 17.
    Creasy, N., Proper, H.A.: A generic model for 3-Dimensional conceptual modelling. Data Knowl. Eng. 20(2), 119–162 (1996)CrossRefGoogle Scholar
  18. 18.
    Halpin, T.A.: A logical analysis of information systems: static aspects of the data-oriented perspective. Ph.D. thesis, University of Queensland, Brisbane, Queensland, Australia (1989)Google Scholar
  19. 19.
    Van Bommel, P., ter Hofstede, A.H.M., van der Weide, T.: Semantics and verification of object-role models. Inf. Syst. 16(5), 471–495 (1991)CrossRefGoogle Scholar
  20. 20.
    ter Hofstede, A.H.M., Lippe, E., Frederiks, P.J.M.: Conceptual data modeling from a categorical perspective. Comput. J. 39(3), 215–231 (1996)CrossRefGoogle Scholar
  21. 21.
    ter Hofstede, A.H.M., Proper, H.A., van der Weide, T.: Formal definition of a conceptual language for the description and manipulation of information models. Inf. Syst. 18(7), 489–523 (1993)CrossRefGoogle Scholar
  22. 22.
    Bloesch, A.C., Halpin, T.A.: Conceptual queries using ConQuer-II. In: Embley, D.W., Goldstein, R.C. (eds.) ER 1997. LNCS, vol. 1331, pp. 113–126. Springer, Heidelberg (1997). Scholar
  23. 23.
    Meersman, R.: The RIDL conceptual language. Technical report, International Centre for Information Analysis Services, Control Data Belgium, Inc., Brussels, Belgium (1982)Google Scholar
  24. 24.
    Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for MDA, 2nd edn. Addison Wesley, Reading (2003). ISBN 0-321-17936-6Google Scholar
  25. 25.
    Moody, D.L.: The “Physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Software Eng. 35(6), 756–779 (2009)CrossRefGoogle Scholar
  26. 26.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Chicago (1949)zbMATHGoogle Scholar
  27. 27.
    Jarrar, M., Meersman, R.: Ontology engineering – the DOGMA approach. In: Dillon, T.S., Chang, E., Meersman, R., Sycara, K. (eds.) Advances in Web Semantics I. LNCS, vol. 4891, pp. 7–34. Springer, Heidelberg (2008). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stijn Hoppenbrouwers
    • 1
    • 2
    Email author
  • Henderik A. Proper
    • 3
    • 4
  • Maurice Nijssen
    • 5
  1. 1.HAN University of Applied SciencesArnhemThe Netherlands
  2. 2.Radboud UniversityNijmegenThe Netherlands
  3. 3.Luxembourg Institute for Science and TechnologyEsch-sur-AlzetteLuxembourg
  4. 4.University of LuxembourgLuxembourgLuxembourg
  5. 5.PNA GroupHeerlenThe Netherlands

Personalised recommendations