Related Terms Extraction from Arabic News Corpus Using Word Embedding

  • Amina ChouiguiEmail author
  • Oussama Ben Khiroun
  • Bilel Elayeb
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11231)


Different techniques are used in text mining to analyze data, extract knowledge, information and relations. We aim in this work to extract related terms for specific keywords. In the first step, we extract Arabic keywords from news articles titles using the TF-IDF terms weighting measure. In the next step, we extract the related terms, from both titles and main texts, using Word2Vec model as a word embedding technique. In order to evaluate our proposed approach, we compute the precision values of the extracted terms that are present in Wikipedia articles. The experiments results perform better for the extracted terms from the articles main texts than titles and the international news category has the highest precision value.


Text mining Word embedding Word2Vec Arabic language Terms weighting DL4J Cosine similarity 


  1. 1.
    Gök, A., Waterworth, A., Shapira, P.: Use of web mining in studying innovation. Scientometrics 102(1), 653–671 (2015)CrossRefGoogle Scholar
  2. 2.
    Salloum, S.A., AlHamad, A.Q., Al-Emran, M., Shaalan, K.: A survey of Arabic text mining. Intell. Nat. Lang. Process. Trends Appl. Stud. Comput. Intell. 740, 417–431 (2018)Google Scholar
  3. 3.
    Elayeb, B.: Arabic word sense disambiguation: a review. Artif. Intell. Rev. 50, 1–58 (2018)CrossRefGoogle Scholar
  4. 4.
    Elayeb, B., Bounhas, I.: Arabic cross-language information retrieval: a review. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 15(3), 18:1–18:44 (2016)CrossRefGoogle Scholar
  5. 5.
    Bounhas, I., Elayeb, B., Evrard, F., Slimani, Y.: Organizing contextual knowledge for Arabic text disambiguation and terminology extraction. Knowl. Organ. 38(6), 473–490 (2011)Google Scholar
  6. 6.
    Al-Mahmoud, H., Al-Razgan, M.: Arabic text mining: a systematic review of the published literature 2002–2014. In: Proceedings of ICCC, pp. 1–7 (2015)Google Scholar
  7. 7.
    Alhawarat, M., Hegazi, M., Hilal, A.: Processing the text of the Holy Quran: a text mining study. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 6(2), 262–267 (2015)Google Scholar
  8. 8.
    Harrag, F.: Text mining approach for knowledge extraction in Sahîh Al-Bukhari. Comput. Hum. Behav. 30, 558–566 (2013)CrossRefGoogle Scholar
  9. 9.
    Al-Horaibi, L., Khan, M.B.: Sentiment analysis of Arabic tweets using text mining techniques. In: First International Workshop on Pattern Recognition (2016)Google Scholar
  10. 10.
    Chan, H.K., Lacka, E., Yee, R.W., Lim, M.K.: A case study on mining social media data. In: Proceedings of 2014 IEEE International Conference on Industrial Engineering and Engineering Management, pp. 593–596 (2014)Google Scholar
  11. 11.
    Cherif, W., Madani, A., Kissi, M.: A new modeling approach for Arabic opinion mining recognition. In: Proceedings of Intelligent Systems and Computer Vision (ISCV), pp. 1–6 (2015)Google Scholar
  12. 12.
    Rushdi-Saleh, M., Martín-Valdivia, M.T., Ureña-López, L.A., Perea-Ortega, J.M.: OCA: opinion corpus for Arabic. J. Am. Soc. Inf. Sci. 62(10), 2045–2054 (2011)CrossRefGoogle Scholar
  13. 13.
    Atlam, E.S., Morita, K., Fuketa, M., Aoe, J.I.: A new approach for Arabic text classification using Arabic field-association terms. J. Am. Soc. Inf. Sci. 62(11), 2266–2276 (2011)CrossRefGoogle Scholar
  14. 14.
    Wahsheh, H.A., Alsmadi, I.M., Al-Kabi, M.N.: Analyzing the popular words to evaluate spam in Arabic web pages. Res. Bull. Jordan ACM 11(11), 22–26 (2012)Google Scholar
  15. 15.
    Larkey, L.S., Ballesteros, L., Connell, M.E.: Light stemming for Arabic information retrieval. In: Soudi, A., Bosch, A., Neumann, G. (eds.) Arabic Computational Morphology. Text, Speech and Language Technology, vol. 38, pp. 221–243 (2007). Springer, Dordrecht.
  16. 16.
    Chowdhury, A., Aljlayl, M., Jensen, E.C., Beitzel, S.M., Grossmanand, D.A., Frieder, O.: IIT at TREC 2002 linear combinations based on document structure and varied stemming for Arabic retrieval. In: Proceedings of TREC 2002, pp. 299–310 (2002)Google Scholar
  17. 17.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of NIPS 2013, pp. 3111–3119 (2013)Google Scholar
  18. 18.
    Chouigui, A., Ben Khiroun, O., Elayeb, B.: ANT corpus: an Arabic news text collection for textual classification. In: Proceedings of AICCSA 2017, pp. 135–142 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amina Chouigui
    • 1
    • 2
    Email author
  • Oussama Ben Khiroun
    • 1
    • 2
  • Bilel Elayeb
    • 1
    • 3
  1. 1.RIADI Research Laboratory, ENSIManouba UniversityManoubaTunisia
  2. 2.National Engineering School of Sousse, ENISOSousse UniversitySousseTunisia
  3. 3.Emirates College of TechnologyAbu DhabiUnited Arab Emirates

Personalised recommendations