Using Behavior and Text Analysis to Detect Propagandists and Misinformers on Twitter

  • Michael OrlovEmail author
  • Marina LitvakEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 898)


There are organized groups that disseminate similar messages in online forums and social media; they respond to real-time events or as persistent policy, and operate with state-level or organizational funding. Identifying these groups is of vital importance for preventing distribution of sponsored propaganda and misinformation. This paper presents an unsupervised approach using behavioral and text analysis of users and messages to identify groups of users who abuse the Twitter micro-blogging service to disseminate propaganda and misinformation. Groups of users who frequently post strikingly similar content at different times are identified through repeated clustering and frequent itemset mining, with the lack of credibility of their content validated through human assessment. This paper introduces a case study into automatic identification of propagandists and misinformers in social media.


Propaganda Misinformation Social networks 


  1. 1.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I., et al.: Fast discovery of association rules. Adv. Knowl. Discov. Data Min. 12(1), 307–328 (1996)Google Scholar
  2. 2.
    Akoglu, L., Chandy, R., Faloutsos, C.: Opinion fraud detection in online reviews by network effects. In: ICWSM 2013, pp. 2–11 (2013)Google Scholar
  3. 3.
    Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2), 211–36 (2017)CrossRefGoogle Scholar
  4. 4.
    Berthold, M.R., et al.: KNIME: the Konstanz information miner. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis, Machine Learning and Applications. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 319–326. Springer, Heidelberg (2008). Scholar
  5. 5.
    Castillo, C., Mendoza, M., Poblete, B.: Information credibility on Twitter. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 675–684. ACM, New York (2011).
  6. 6.
    Chen, Y., Conroy, N.J., Rubin, V.L.: Misleading online content: recognizing clickbait as false news. In: Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection, pp. 15–19. ACM (2015)Google Scholar
  7. 7.
    Conroy, N.J., Rubin, V.L., Chen, Y.: Automatic deception detection: methods for finding fake news. Proc. Assoc. Inf. Sci. Technol. 52(1), 1–4 (2015)CrossRefGoogle Scholar
  8. 8.
    Hamidian, S., Diab, M.T.: Rumor identification and belief investigation on Twitter. In: WASSA@ NAACL-HLT, pp. 3–8 (2016)Google Scholar
  9. 9.
    Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The web as a graph: measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999). Scholar
  10. 10.
    Li, Z.C., He, P.L., Lei, M.: A high efficient AprioriTid algorithm for mining association rule. In: 2005 International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1812–1815. IEEE, August 2005.
  11. 11.
    Lumezanu, C., Feamster, N., Klein, H.: #bias: measuring the tweeting behavior of propagandists. In: Sixth International AAAI Conference on Weblogs and Social Media (2012).
  12. 12.
    Meduza: Authors of paid comments in support of Moscow authorities forgot to edit assignment (2017).
  13. 13.
    Mehta, B., Hofmann, T., Fankhauser, P.: Lies and propaganda: detecting spam users in collaborative filtering. In: Proceedings of the 12th International Conference on Intelligent User Interfaces, pp. 14–21. ACM (2007).
  14. 14.
    Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: can we trust what we RT? In: Proceedings of the First Workshop on Social Media Analytics, SOMA 2010, pp. 71–79. ACM, New York (2010).
  15. 15.
    Metaxas, P.: Using propagation of distrust to find untrustworthy web neighborhoods. In: 2009 Fourth International Conference on Internet and Web Applications and Services, ICIW 2009, pp. 516–521. IEEE (2009).
  16. 16.
    Paul, C., Matthews, M.: The Russian “Firehose of Falsehood” Propaganda Model. RAND Corporation, Santa Monica (2016)Google Scholar
  17. 17.
    Qazvinian, V., Rosengren, E., Radev, D.R., Mei, Q.: Rumor has it: identifying misinformation in microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, pp. 1589–1599. Association for Computational Linguistics, Stroudsburg (2011).
  18. 18.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)CrossRefGoogle Scholar
  19. 19.
    The Alliance for Securing Democracy: Hamilton 68 (2017).
  20. 20.
    Volkova, S., Shaffer, K., Jang, J.Y., Hodas, N.: Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on Twitter. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Short Papers, vol. 2, pp. 647–653 (2017)Google Scholar
  21. 21.
    Zubiaga, A., Liakata, M., Procter, R., Bontcheva, K., Tolmie, P.: Towards detecting rumours in social media. In: AAAI Workshop: AI for Cities (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.NoExecBeer ShevaIsrael
  2. 2.Shamoon College of EngineeringBeer ShevaIsrael

Personalised recommendations