Advertisement

A Mixed Model Based on Shape Context and Spark for Sketch Based Image Retrieval

  • Willy Puenternan FernándezEmail author
  • César A. Beltrán CastañónEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 898)

Abstract

Nowadays, information is not limited to textual representation but takes several other forms such as sketch-based image retrieval, where the user draws a query, and the system retrieves the most similar images. In this work we present a mixed approach combining shape context and Spark features, previously we had applied the Bag-of-Features strategy to select regions of interest, achieving significant improvement in effectiveness of the retrieval task. Our method works as a local strategy for key-points detection. Results are very auspicious, and we show different experiments conducted to demonstrate our proposed methodology. The highlight of this paper is the step-by-step description of the methodology to create a framework for sketch-based image retrieval.

Keywords

SBIR Bag-of-features Shape context Spark feature 

References

  1. 1.
    Choi, Y.: Analysis of image search queries on the web: query modification patterns and semantic attributes. J. Am. Soc. Inf. Sci. Technol. 64(7), 1423–1441 (2013)CrossRefGoogle Scholar
  2. 2.
    Mysen, C.C., Verma, N., Chen, J.: Ranking custom search results. US Patent 8,930,359, 6 Ene. 2015Google Scholar
  3. 3.
    Veltkamp, R.C., Burkhardt, H., Kriegel, H.P.: State-of-the-Art in Content-Based Image and Video Retrieval, vol. 22. Springer, New York (2013)zbMATHGoogle Scholar
  4. 4.
    Lew, M.S.: Principles of Visual Information Retrieval. Springer, London (2013)zbMATHGoogle Scholar
  5. 5.
    Cao, Y., Wang, H., Wang, C., Li, Z., Zhang, L., Zhang, L.: MindFinder: interactive sketch-based image search on millions of images, Firenze, Italy (2010)Google Scholar
  6. 6.
    Yu, Q., et al.: Sketch-a-net that beats humans. arXiv preprint arXiv:1501.07873 (2015)
  7. 7.
    Hildebrand, K., Eitz, M., Boubekeur, T., Alexa, M.: Sketch-based image retrieval: benchmark and bag-of-features descriptors. IEEE Trans. Vis. Comput. Graph. 17, 1624–1636 (2011)CrossRefGoogle Scholar
  8. 8.
    López, J.C.: Xataka, 7 Abril 2016. http://www.xataka.com/robotica-e-ia/
  9. 9.
    Feijo, S.P.: Aplicación del Modelo Bag-of-Words al Reconocimiento de Imágenes. Universidad Carlos III de Madrid, Madrid, España (2009)Google Scholar
  10. 10.
    Rosado Rodrigo, P., Figueras Ferrer, E., Planas Roselló, M., Ferran Reverter, C.: La imagen toma la palabra: Construcción de un vocabulario visual. In: de 2nd Art, Science, City International Conference ASC 2015, Valencia, España (2015)Google Scholar
  11. 11.
    Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition. In: Advances in neural information processing systems, pp. 831–837 (2001)Google Scholar
  12. 12.
    Doxygen: Open Source Computer Vision, 22 de Agosto de 2016. http://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Engineering, Artificial Intelligence Research Group (IA-PUCP)Pontificia Universidad Católica del PerúLima 32Peru

Personalised recommendations