Thought Off-line Sanitization Methods for Bank Transactions

  • Isaias Hoyos
  • Miguel Nunez-del-PradoEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 898)


In the digital era, people generate a lot of digital traces ranging from posts on social networks, call detail records and credit or debit banks transactions among others. These data could help society to understand different urban phenomena such as what citizens are talking about, how they commute or what are their spending behaviors. Therefore, the use of such data trigger privacy issues. In the present effort, we study four different Statistical Disclosure Control filters to sanitize off-line credit or debit bank transactions. Consequently, we analyze Noise Addition, Microaggregation, Rank Swapping and Differential Privacy filters concerning Disclosure Risk, Information Loss, and utility. We observed that Microaggregation and Different Privacy perform very well for minimizing Disclosure Risk while providing a good utility for statistics of spending amounts per industry type.


Privacy filters Statistical Disclosure Control (SDC) Microaggregation Differential Privacy 


  1. 1.
    Brand, R.: Tests of the applicability of sullivan algorithm to synthetic data and real business data in official statistics. European Project IST-2000-25069 CASC (2002)Google Scholar
  2. 2.
    DeWaal, A., Willenborg, L.: Global recodings and local suppressions in microdata sets. In: Proceedings of Statistics Canada Symposium, vol. 95, pp. 121–132 (1995)Google Scholar
  3. 3.
    Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation for statistical disclosure control. IEEE Trans. Knowl. Data Eng. 14(1), 189–201 (2002)CrossRefGoogle Scholar
  4. 4.
    Domingo-Ferrer, J., Torra, V.: Disclosure risk assessment in statistical data protection. J. Comput. Appl. Math. 164, 285–293 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Domingo-Ferrer, J., Sebé, F., Castellà-Roca, J.: On the security of noise addition for privacy in statistical databases. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 149–161. Springer, Heidelberg (2004). Scholar
  6. 6.
    Domingo-Ferrer, J., Sebé, F., Solanas, A.: A polynomial-time approximation to optimal multivariate microaggregation. Comput. Math. Appl. 55(4), 714–732 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Domingo-Ferrer, J., Torra, V.: A quantitative comparison of disclosure control methods for microdata. In: Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies, pp. 111–134 (2001)Google Scholar
  8. 8.
    Hundepool, A., et al.: Statistical Disclosure Control. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  9. 9.
    Kim, J.: A method for limiting disclosure in microdata based on random noise and transformation (2002)Google Scholar
  10. 10.
    Laszlo, M., Mukherjee, S.: Minimum spanning tree partitioning algorithm for microaggregation. IEEE Trans. Knowl. Data Eng. 17(7), 902–911 (2005)CrossRefGoogle Scholar
  11. 11.
    Leo, Y., Karsai, M., Sarraute, C., Fleury, E.: Correlations of consumption patterns in social-economic networks. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 493–500. IEEE (2016)Google Scholar
  12. 12.
    Leoni, D.: Non-interactive differential privacy: a survey. In: Proceedings of the First International Workshop on Open Data, WOD 2012. ACM, New York, pp. 40–52 (2012)Google Scholar
  13. 13.
    Li, N., Lyu, M., Su, D., Yang, W.: Differential privacy: from theory to practice. Synth. Lect. Inf. Secur. Priv. Trust. 8, 1–138 (2016)Google Scholar
  14. 14.
    Muralidhar, K., Sarathy, R.: Data shufflinga new masking approach for numerical data. Manag. Sci. 52(5), 658–670 (2006)CrossRefGoogle Scholar
  15. 15.
    Nin, J., Herranz, J., Torra, V.: Rethinking rank swapping to decrease disclosure risk. Data Knowl. Eng. 64(1), 346–364 (2008)CrossRefGoogle Scholar
  16. 16.
    Oganian, A.: Multiplicative noise protocols. In: Domingo-Ferrer, J., Magkos, E. (eds.) PSD 2010. LNCS, vol. 6344, pp. 107–117. Springer, Heidelberg (2010). Scholar
  17. 17.
    Oganian, A.: Multiplicative noise for masking numerical microdata with constraints. SORT 35, 99–112 (2011)MathSciNetGoogle Scholar
  18. 18.
    Reiss, S.P.: Practical data-swapping: the first steps. ACM Trans. Database Syst. (TODS) 9(1), 20–37 (1984)CrossRefGoogle Scholar
  19. 19.
    Reiss, S.P., Post, M.J., Dalenius, T.: Non-reversible privacy transformations. In: Proceedings of the 1st ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. ACM, pp. 139–146 (1982)Google Scholar
  20. 20.
    Rodríguez, D.M., Nin, J., Nuñez-del Prado, M.: Towards the adaptation of SDC methods to stream mining. Comput. Secur. 70, 702–722 (2017)CrossRefGoogle Scholar
  21. 21.
    Sebé, F., Domingo-Ferrer, J., Mateo-Sanz, J.M., Torra, V.: Post-Masking optimization of the tradeoff between information loss and disclosure risk in masked microdata sets. In: Domingo-Ferrer, J. (ed.) Inference Control in Statistical Databases. LNCS, vol. 2316, pp. 163–171. Springer, Heidelberg (2002). Scholar
  22. 22.
    Sullivan, G.R.: The use of added error to avoid disclosure in microdata releases. Iowa State University, Unpublished Ph.D. dissertation (1989)Google Scholar
  23. 23.
    Templ, M.: Statistical Disclosure Control for Microdata: Methods and Applications in R. Springer, Cham (2017). Scholar
  24. 24.
    Templ, M., Meindl, B.: Robust statistics meets SDC: new disclosure risk measures for continuous microdata masking. In: Domingo-Ferrer, J., Saygın, Y. (eds.) PSD 2008. LNCS, vol. 5262, pp. 177–189. Springer, Heidelberg (2008). Scholar
  25. 25.
    Willenborg, L., De Waal, T.: Statistical Disclosure Control in Practice, vol. 111. Springer, New York (1996). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad del PacíficoLimaPeru

Personalised recommendations