Advertisement

Methods of Finding of Exact Analytical Solutions of Nonautonomous Nonlinear Klein-Fock-Gordon Equation

  • A. N. BulyginEmail author
  • Yu. V. Pavlov
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 103)

Abstract

Methods of finding of exact analytical solutions of nonautonomous nonlinear Klein-Fock-Gordon (NKFG) equation are presented. They are based on the principles of construction of functionally invariant solutions of the wave equation. Solutions are sought as a composite function. The argument of the composite function (ansatz) is solution of the special equation. The choice of ansatz defines a type of the solution. Examples of exact analytical solutions of NKFG equation are given.

Notes

Acknowledgements

This work was supported by the Russian Foundation for Basic Researches, Grant Nos. 16-01-00068-a and 17-01-00230-a.

References

  1. 1.
    Bullough, R.K., Caudry, P.J. (eds.): Solitons. Springer, New York (1980)Google Scholar
  2. 2.
    Kudryashov, N.A.: Methods of Nonlinear Mathematical Physics. Intellekt Publishing, Moscow, Dolgoprudnyi (2010)Google Scholar
  3. 3.
    Sánchez, A., Scharf, R., Bishop, A.R., Vázquez, L.: Sine-Gordon breathers on spatially periodic potentials. Phys. Rev. A 45, 6031–6037 (1992)CrossRefGoogle Scholar
  4. 4.
    González, J.A., Cuenda, S., Sánchez, A.: Kink dynamics in spatially inhomogeneous media: the role of internal modes. Phys. Rev. E 75, 036611 (2007)Google Scholar
  5. 5.
    Gumerov, A.M., Ekomasov, E.G., Zakir’yanov, F.K., Kudryavtsev, R.V.: Structure and properties of four-kink multisolitons of the sine-Gordon equation. Comput. Math. Math. Phys. 54, 491–504 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Indeitsev, D.A., Kuznetsov, N.G., Motygin, O.V., Mochalova, Y.A.: Localization of Linear Waves. St. Petersburg University Publishing (2007)Google Scholar
  7. 7.
    Indeitsev, D.A., Meshcheryakov, Y., Kuchmin, A.Yu., Vavilov, D.S.: Multi-scale model of steady-wave shock in medium with relaxation. Dokl. Russ. Acad. Sci. 458, 165–168 (2014)Google Scholar
  8. 8.
    Indeitsev, D.A., Naumov, V.N., Skubov, D.Y., Vavilov, D.S.: Problems of describing phase transitions in solids. In: Belyaev, A.K., Irschik, H., Krommer, M. (eds.) Mechanics and Model-Based Control of Advanced Engineering Systems, pp. 181–188. Springer, Wien (2014)Google Scholar
  9. 9.
    Jacobi, C.G.J.: Über eine particuläre Lösung der partiellen Differentialgleichung \(\frac{\partial ^2 V}{\partial x^2} + \frac{\partial ^2 V}{\partial y^2} + \frac{\partial ^2 V}{\partial z^2} =0\). Crelle J. für die reine und angewandte Mathematik 36(1848), 113–134. (Reprinted in C.G.J. Jacobi’s Gesammelte Werke, Zweiter band, Herausgegeben K. von Weierstrass, Verlag von G. Reimer, Berlin, 1882, s. 191–216)Google Scholar
  10. 10.
    Forsyth, A.R.: New solutions of some of the partial differential equations of mathematical physics. Messenger Math. 27, 99–118 (1898)Google Scholar
  11. 11.
    Bateman, H.: The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell’s Equations. Cambridge University Press, Cambridge (1915)zbMATHGoogle Scholar
  12. 12.
    Smirnov, V., Sobolev, S.: Sur une méthode nouvelle dans le problème plan des vibrations élastiques. Tr. Seism. Inst. 20, 1–37 (1932). [English trans.: On a new method in the plane problem on elastic vibrations, in Selected Works of S.L. Sobolev, vol. I, pp. 45–80. Springer, New York (2006)]Google Scholar
  13. 13.
    Smirnoff, V., Soboleff, S.: Sur le problème plan des vibrations élastiques. C. R. Acad. Sci. Paris 194, 1437–1439 (1932)Google Scholar
  14. 14.
    Sobolev, S.L.: Functionally invariant solutions of the wave equation. Tr. Fiz-Mat Inst Steklova 5, 259–264 (1934). [English trans.: Selected Works of S.L. Sobolev, vol. I, pp. 195–199. Springer, New York (2006)]Google Scholar
  15. 15.
    Sobolev, S.L., Demidenko, G.V., Vaskevich, V.L. (eds.): Selected Works. Springer, New York (2006)Google Scholar
  16. 16.
    Erugin, N.P.: On functionally invariant solutions. Uchenye Zapiski Leningrad University Vyp. 15(96), 101–134 (1948) (in Russian)Google Scholar
  17. 17.
    Aero, E.L., Bulygin, A.N., Pavlov, Yu.V.: Solutions of the three-dimensional sine-Gordon equation. Theor. Math. Phys. 158, 313–319 (2009)Google Scholar
  18. 18.
    Aero, E.L., Bulygin, A.N., Pavlov, Yu.V.: Solutions of (3+1)-dimensional generalized sine-Gordon equation. Nelineinyi Mir 7, 513–517 (2009) (in Russian)Google Scholar
  19. 19.
    Aero, E.L., Bulygin, A.N., Pavlov, Yu.V.: New approach to the solution of the classical sine-Gordon equation and its generalizations. Diff. Equat. 47, 1442–1452 (2011)Google Scholar
  20. 20.
    Aero, E.L., Bulygin, A.N., Pavlov, Yu.V.: Functionally invariant solutions of nonlinear Klein-Fock-Gordon equation. Appl. Math. Comput. 223, 160–166 (2013)Google Scholar
  21. 21.
    Aero, E.L., Bulygin, A.N., Pavlov, Yu.V.: Solutions of the sine-Gordon equation with a variable amplitude. Theor. Math. Phys. 184, 961–972 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Problems in Mechanical Engineering of Russian Academy of SciencesSaint PetersburgRussia

Personalised recommendations