Advertisement

On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within

  • Vishal Anand
  • Ivan C. ChristovEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 103)

Abstract

In this chapter, we analyze the steady-state microscale fluid–structure interaction (FSI) between a generalized Newtonian fluid and a hyperelastic tube. Physiological flows, especially in hemodynamics, serve as primary examples of such FSI phenomena. The small scale of the physical system renders the flow field, under the power-law rheological model, amenable to a closed-form solution using the lubrication approximation. On the other hand, negligible shear stresses on the walls of a long vessel allow the structure to be treated as a pressure vessel. The constitutive equation for the microtube is prescribed via the strain energy functional for an incompressible, isotropic Mooney–Rivlin material. We employ both the thin- and thick-walled formulations of the pressure vessel theory, and derive the static relation between the pressure load and the deformation of the structure. We harness the latter to determine the flow rate–pressure drop relationship for non-Newtonian flow in thin- and thick-walled soft hyperelastic microtubes. Through illustrative examples, we discuss how a hyperelastic tube supports the same pressure load as a linearly elastic tube with smaller deformation, thus requiring a higher pressure drop across itself to maintain a fixed flow rate.

Notes

Acknowledgements

This research was supported by the U.S. National Science Foundation under grant No. CBET-1705637. We dedicate this work to the 70th anniversary of the director of the Institute of Problems in Mechanical Engineering of the Russian Academy of Sciences: Prof. Dr. Sc. D. I. Indeitsev. We also thank Prof. Alexey Porubov for his kind invitation to contribute to this volume, and for his efforts in organizing it.

References

  1. 1.
    Abramian, A.K., Indejtsev, D.A., Vakulenko, S.A.: Wave localization in hydroelastic systems. Flow Turbul. Combust. 61, 1–20 (1998).  https://doi.org/10.1023/A:1026484701275CrossRefzbMATHGoogle Scholar
  2. 2.
    Altenbach, H., Maugin, G.A., Erofeev, V. (eds.): Mechanics of generalized continua. In: Advanced Structured Materials, vol 7. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-19219-7 (2011)zbMATHGoogle Scholar
  3. 3.
    Anand, V., Christov, I.C.: Steady low Reynolds number flow of a generalized Newtonian fluid through a slender elastic tube. arXiv:1810.05155 (2018)
  4. 4.
    Anand, V., David JR, J., Christov, I.C.: Non-Newtonian fluid–structure interactions: static response of a microchannel due to internal flow of a power-law fluid. J Non-Newtonian Fluid Mech 264, 62–72 (2018).  https://doi.org/10.1016/j.jnnfm.2018.12.008MathSciNetCrossRefGoogle Scholar
  5. 5.
    Başar, Y., Weichert, D.: Nonlinear Continuum Mechanics of Solids. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-662-04299-1 (2000)CrossRefGoogle Scholar
  6. 6.
    Bird, R.B.: Useful non-Newtonian models. Annu. Rev. Fluid. Mech. 8, 13–34 (1976).  https://doi.org/10.1146/annurev.fl.08.010176.000305CrossRefzbMATHGoogle Scholar
  7. 7.
    Bisplinghoff, R.L., Ashley, H., Halfman, R.L.: Aeroelasticity. Dover Publications, Mineola, NY (1996)zbMATHGoogle Scholar
  8. 8.
    Bonet, J., Wood, R.J.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, New York, NY (2008)CrossRefGoogle Scholar
  9. 9.
    Boyko, E., Bercovici, M., Gat, A.D.: Viscous-elastic dynamics of power-law fluids within an elastic cylinder. Phys. Rev. Fluids 2, 073301.  https://doi.org/10.1103/PhysRevFluids.2.073301 (2017)
  10. 10.
    Čanić, S., Mikelić, A.: Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries. SIAM J. Appl. Dyn. Syst. 2, 431–463 (2003).  https://doi.org/10.1137/S1111111102411286MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chien, S., Usami, S., Taylor, H.M., Lundberg, J.L., Gregersen, M.I.: Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21, 81–87 (1966).  https://doi.org/10.1152/jappl.1966.21.1.81CrossRefGoogle Scholar
  12. 12.
    Dell’Isola, F., Eremeyev, V.A., Porubov, A. (eds.): Advances in mechanics of microstructured media and structures. In: Advanced Structured Materials, vol. 87. Springer International Publishing, Cham, Switzerland.  https://doi.org/10.1007/978-3-319-73694-5 (2018)zbMATHGoogle Scholar
  13. 13.
    Dym, C.L.: Intoduction to the Theory of Shells. Hemisphere Publishing Corporation, New York, NY (1990)Google Scholar
  14. 14.
    Elbaz, S.B., Gat, A.D.: Dynamics of viscous liquid within a closed elastic cylinder subject to external forces with application to soft robotics. J. Fluid Mech. 758, 221–237 (2014).  https://doi.org/10.1017/jfm.2014.527MathSciNetCrossRefGoogle Scholar
  15. 15.
    Elbaz, S.B., Gat, A.D.: Axial creeping flow in the gap between a rigid cylinder and a concentric elastic tube. J. Fluid Mech. 806, 580–602 (2016).  https://doi.org/10.1017/jfm.2016.587MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Flügge, W.: Stresses in Shells. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-662-01028-0 (1960)zbMATHGoogle Scholar
  17. 17.
    Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York, NY.  https://doi.org/10.1007/978-1-4757-2257-4 (1993)CrossRefGoogle Scholar
  18. 18.
    Gay-Balmaz, F., Georgievskii, D., Putkaradze, V.: Stability of helical tubes conveying fluid. J. Fluids Struct. 78, 146–174 (2018).  https://doi.org/10.1016/j.jfluidstructs.2017.12.020CrossRefGoogle Scholar
  19. 19.
    Grotberg, J.B., Jensen, O.E.: Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36, 121–147 (2004).  https://doi.org/10.1146/annurev.fluid.36.050802.121918MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Heil, M., Hazel, A.L.: Fluid-structure interaction in internal physiological flows. Annu. Rev. Fluid Mech. 43, 141–162 (2011).  https://doi.org/10.1146/annurev-fluid-122109-160703MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hussain, M.A., Kar, S., Puniyani, R.R.: Relationship between power law coefficients and major blood constituents affecting the whole blood viscosity. J. Biosci. 24, 329–337 (1999).  https://doi.org/10.1007/BF02941247CrossRefGoogle Scholar
  22. 22.
    Indeitsev, D.A., Osipova, E.V.: Nonlinear effects in trapped modes of standing waves on the surface of shallow water. Tech. Phys. 45, 1513–1517 (2000).  https://doi.org/10.1134/1.1333186CrossRefGoogle Scholar
  23. 23.
    Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python. GitHub. http://www.scipy.org/ (2001)
  24. 24.
    Kraus, H.: Thin Elastic Shells. Wiley, New York, NY (1967)zbMATHGoogle Scholar
  25. 25.
    Lazopoulos, A., Tsangaris, S.: Flow of incompressible viscous fluid through a tube with non-linear elastic membrane insertion: applications. Eng. Appl. Comput. Fluid Mech. 2, 222–233 (2008a).  https://doi.org/10.1080/19942060.2008.11015223CrossRefzbMATHGoogle Scholar
  26. 26.
    Lazopoulos, A., Tsangaris, S.: Fluid flow of incompressible viscous fluid through a non-linear elastic tube. Arch. Appl. Mech. 78(11), 895–907 (2008b).  https://doi.org/10.1007/s00419-008-0205-xCrossRefzbMATHGoogle Scholar
  27. 27.
    Leal, L.G.: Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press, New York, NY.  https://doi.org/10.2277/0521849101 (2007)
  28. 28.
    Liu, I.S.: A note on the Mooney-Rivlin material model. Continuum Mech. Thermodyn. 24(4–6), 583–590 (2012).  https://doi.org/10.1007/s00161-011-0197-6MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lurie, A.I.: Theory of Elasticity. Foundations of Engineering Mechanics, Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-540-26455-2 (2005)CrossRefGoogle Scholar
  30. 30.
    Maugin, G.A., Metrikine, A.V. (eds): Mechanics of Generalized Continua: One Hundred Years After the Cosserats, Advances in Mechanics and Mathematics, vol. 21. Springer Science+Business Media, LLC, New York, NY.  https://doi.org/10.1007/978-1-4419-5695-8 (2010)Google Scholar
  31. 31.
    Mihai, L.A., Goriely, A.: Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. A 467, 3633–3646 (2011).  https://doi.org/10.1098/rspa.2011.0281MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Moon, H., Truesdell, C.: Interpretation of adscititious inequalities through the effects pure shear stress produces upon an isotropie elastic solid. Arch. Rational Mech. Anal. 55, 1–17 (1974).  https://doi.org/10.1007/BF00282431MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion and Bending, 2nd edn. Springer Science+Business Media, Dordrecht.  https://doi.org/10.1007/978-94-017-3034-1 (1977)CrossRefGoogle Scholar
  34. 34.
    Ogden, R.W.: Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A 326, 565–584 (1972).  https://doi.org/10.1098/rspa.1972.0026CrossRefzbMATHGoogle Scholar
  35. 35.
    Païdoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow. Academic Press, an imprint of Elsevier Inc., San Diego, CA (1998)Google Scholar
  36. 36.
    Panton, R.L.: Incompressible Flow, 4th edn. Wiley, Hoboken, NJ.  https://doi.org/10.1002/9781118713075 (2013)CrossRefGoogle Scholar
  37. 37.
    Porubov, A.V., Velarde, M.G.: Strain kinks in an elastic rod embedded in a viscoelastic medium. Wave Motion 35, 189–204 (2002).  https://doi.org/10.1016/S0165-2125(01)00101-9MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Raj, M.K., Chakraborty, J., DasGupta, S., Chakraborty, S.: Flow-induced deformation in a microchannel with a non-Newtonian fluid. Biomicrofluidics 12, 034116 (2018).  https://doi.org/10.1063/1.5036632CrossRefGoogle Scholar
  39. 39.
    Shapiro, A.H.: Steady flow in collapsible tubes. ASME J. Biomech. Eng. 99, 126–147 (1977).  https://doi.org/10.1115/1.3426281CrossRefGoogle Scholar
  40. 40.
    Vable, M.: Mechanics of Materials, 2nd edn. Expanding Educational Horizons, LLC, http://madhuvable.org/ (2009)
  41. 41.
    Wagner, N.J., Brady, J.F.: Shear thickening in colloidal dispersions. Phys. Today 62(10), 27–32 (2009).  https://doi.org/10.1063/1.3248476CrossRefGoogle Scholar
  42. 42.
    Whittaker, R.J., Heil, M., Jensen, O.E., Waters, S.L.: A rational derivation of a tube law from shell theory. Q. J. Mech. Appl. Math. 63, 465–496 (2010).  https://doi.org/10.1093/qjmam/hbq020MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations