Advertisement

Understanding Automated Feedback in Learning Processes by Mining Local Patterns

  • Galina DeevaEmail author
  • Jochen De Weerdt
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)

Abstract

Process mining, and in particular process discovery, provides useful tools for extracting process models from event-based data. Nevertheless, certain types of processes are too complex and unstructured to be able to be represented with a start-to-end process model. For such cases, instead of extracting a model from a complete event log, it is interesting to zoom in on some parts of the data and explore behavioral patterns on a local level. Recently, local process model mining has been introduced, which is a technique in-between sequential pattern mining and process discovery. Other process mining methods can also used for mining local patterns, if combined with certain data preprocessing. In this paper, we explore discovery of local patterns in the data representing learning processes. We exploit real-life event logs from JMermaid, a Smart Learning Environment for teaching Information System modeling with built-in feedback functionality. We focus on a specific instance of feedback provided in JMermaid, which is a reminder to simulate the model, and locally explore how students react to this feedback. Additionally, we discuss how to tailor local process model mining to a certain case, in order to avoid the computationally expensive task of discovering all available patterns, by combining it with other techniques for dealing with unstructured data, such as trace clustering and window-based data preprocessing.

Keywords

Process discovery Local process models Automated feedback Trace clustering 

References

  1. 1.
    Trcka, N., Pechenizkiy, M.: From local patterns to global models: towards domain driven educational process mining. In: 2009 Ninth International Conference on Intelligent Systems Design and Applications, ISDA 2009, pp. 1114–1119. IEEE (2009)Google Scholar
  2. 2.
    Van der Aalst, W.M.: Process Mining: Data Science in Action. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  3. 3.
    Deeva, G., De Smedt, J., De Koninck, P., De Weerdt, J.: Dropout prediction in MOOCs: a comparison between process and sequence mining. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 243–255. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74030-0_18CrossRefGoogle Scholar
  4. 4.
    Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Mining local process models. J. Innov. Dig. Ecosyst. 3(2), 183–196 (2016)CrossRefGoogle Scholar
  5. 5.
    Tax, N., Sidorova, N., van der Aalst, W.M., Haakma, R.: Heuristic approaches for generating local process models through log projections. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2016)Google Scholar
  6. 6.
    Weerapong, S., Porouhan, P., Premchaiswadi, W.: Process mining using \(\alpha \)-algorithm as a tool (a case study of student registration). In: 2012 10th International Conference on ICT and Knowledge Engineering (ICT and Knowledge Engineering), pp. 213–220. IEEE (2012)Google Scholar
  7. 7.
    Vahdat, M., Oneto, L., Anguita, D., Funk, M., Rauterberg, M.: A learning analytics approach to correlate the academic achievements of students with interaction data from an educational simulator. In: Conole, G., Klobučar, T., Rensing, C., Konert, J., Lavoué, É. (eds.) EC-TEL 2015. LNCS, vol. 9307, pp. 352–366. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24258-3_26CrossRefGoogle Scholar
  8. 8.
    Juhaňák, L., Zounek, J., Rohlíková, L.: Using process mining to analyze students’ quiz-taking behavior patterns in a learning management system. Comput. Hum. Behav. (2017)Google Scholar
  9. 9.
    Mukala, P., Buijs, J., Van Der Aalst, W.: Exploring students learning behaviour in MOOCs using process mining techniques. Department of Mathematics and Computer Science, University of Technology, Eindhoven, The Netherlands (2015)Google Scholar
  10. 10.
    Maldonado-Mahauad, J., Pérez-Sanagustín, M., Kizilcec, R.F., Morales, N., Munoz-Gama, J.: Mining theory-based patterns from big data: identifying self-regulated learning strategies in massive open online courses. Comput. Hum. Behav. 80, 179–196 (2018)CrossRefGoogle Scholar
  11. 11.
    Schoor, C., Bannert, M.: Exploring regulatory processes during a computer-supported collaborative learning task using process mining. Comput. Hum. Behav. 28(4), 1321–1331 (2012)CrossRefGoogle Scholar
  12. 12.
    van der Aalst, W.M.P., Guo, S., Gorissen, P.: Comparative process mining in education: an approach based on process cubes. In: Ceravolo, P., Accorsi, R., Cudre-Mauroux, P. (eds.) SIMPDA 2013. LNBIP, vol. 203, pp. 110–134. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46436-6_6CrossRefGoogle Scholar
  13. 13.
    Papamitsiou, Z., Economides, A.A.: Process mining of interactions during computer-based testing for detecting and modelling guessing behavior. In: Zaphiris, P., Ioannou, A. (eds.) LCT 2016. LNCS, vol. 9753, pp. 437–449. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39483-1_40CrossRefGoogle Scholar
  14. 14.
    Sedrakyan, G., Snoeck, M., De Weerdt, J.: Process mining analysis of conceptual modeling behavior of novices-empirical study using jmermaid modeling and experimental logging environment. Comput. Hum. Behav. 41, 486–503 (2014)CrossRefGoogle Scholar
  15. 15.
    Sedrakyan, G., De Weerdt, J., Snoeck, M.: Process-mining enabled feedback: tell me how to do it right. Comput. Hum. Behav. 57, 352–376 (2016)CrossRefGoogle Scholar
  16. 16.
    Bogarín, A., Cerezo, R., Romero, C.: A survey on educational process mining. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 8(1), e1230 (2018)CrossRefGoogle Scholar
  17. 17.
    Maggi, F.M., Mooij, A.J., van der Aalst, W.M.: User-guided discovery of declarative process models. In: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 192–199. IEEE (2011)Google Scholar
  18. 18.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75183-0_24CrossRefGoogle Scholar
  19. 19.
    Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes in event logs. In: Ceravolo, P., Russo, B., Accorsi, R. (eds.) SIMPDA 2014. LNBIP, vol. 237, pp. 1–31. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27243-6_1CrossRefGoogle Scholar
  20. 20.
    Han, J., et al.: PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th International Conference on Data Engineering, pp. 215–224 (2001)Google Scholar
  21. 21.
    Dalmas, B., Tax, N., Norre, S.: Heuristics for high-utility local process model mining. In: Proceedings of the International Workshop on Algorithms and Theories for the Analysis of Event Data, pp. 106–121 (2017)Google Scholar
  22. 22.
    Tax, N., Dalmas, B., Sidorova, N., van der Aalst, W.M., Norre, S.: Interest-driven discovery of local process models. arXiv preprint arXiv:1703.07116 (2017)
  23. 23.
    Mannhardt, F., Tax, N.: Unsupervised event abstraction using pattern abstraction and local process models. arXiv preprint arXiv:1704.03520 (2017)
  24. 24.
    Snoeck, M.: Enterprise Information Systems Engineering: The MERODE Approach. Springer, Cham (2014)CrossRefGoogle Scholar
  25. 25.
    Serral, E., De Weerdt, J., Sedrakyan, G., Snoeck, M.: Automating immediate and personalized feedback taking conceptual modelling education to a next level. In: 2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS), pp. 1–6. IEEE (2016)Google Scholar
  26. 26.
    Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00328-8_11CrossRefGoogle Scholar
  27. 27.
    De Weerdt, J., vanden Broucke, S., Vanthienen, J., Baesens, B.: Active trace clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12), 2708–2720 (2013)CrossRefGoogle Scholar
  28. 28.
    Bose, R.J.C., Van der Aalst, W.M.: Context aware trace clustering: towards improving process mining results. In: Proceedings of the 2009 SIAM International Conference on Data Mining, SIAM, pp. 401–412 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Economics and Business, Department of Decision Sciences and Information ManagementKU LeuvenLeuvenBelgium

Personalised recommendations