Advertisement

An Application of Process Mining in the Context of Melanoma Surveillance Using Time Boxing

  • Christoph Rinner
  • Emmanuel HelmEmail author
  • Reinhold Dunkl
  • Harald Kittler
  • Stefanie Rinderle-Ma
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)

Abstract

Background: Process mining is a relatively new discipline that helps to discover and analyze actual process executions based on log data. In this paper we apply conformance checking techniques to the process of surveillance of melanoma patients. This process consists of recurring events with time constraints between the events. Objectives: The goal of this work is to show how existing clinical data collected during melanoma surveillance can be prepared and pre-processed to be reused for process mining. Methods: We describe an approach based on time boxing to create process models from medical guidelines and the corresponding event logs from clinical data of patient visits. Results: Event logs were extracted for 1,023 patients starting melanoma surveillance at the Department of Dermatology at the Medical University of Vienna between January 2010 and June 2017. Conformance checking techniques available in the ProM framework were applied. Conclusions: The presented time boxing enables the direct use of existing process mining frameworks like ProM to perform process-oriented analysis also with respect to time constraints between events.

Keywords

Health care processes Process mining Electronic health records Medical guidelines 

References

  1. 1.
    van der Aalst, W.M.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-662-49851-4CrossRefzbMATHGoogle Scholar
  2. 2.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards robust conformance checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010. LNBIP, vol. 66, pp. 122–133. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20511-8_11CrossRefGoogle Scholar
  3. 3.
    Binder, M., et al.: On analyzing process compliance in skin cancer treatment: an experience report from the evidence-based medical compliance cluster (EBMC2). In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 398–413. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31095-9_26CrossRefGoogle Scholar
  4. 4.
    De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A critical evaluation study of model-log metrics in process discovery. In: zur Muehlen, M., Su, J. (eds.) BPM 2010. LNBIP, vol. 66, pp. 158–169. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20511-8_14CrossRefGoogle Scholar
  5. 5.
    Dorda, W., et al.: ArchiMed: a medical information and retrieval system. Methods Inf. Med. 38(1), 16–24 (1999)CrossRefGoogle Scholar
  6. 6.
    Dunkl, R., Fröschl, K.A., Grossmann, W., Rinderle-Ma, S.: Assessing medical treatment compliance based on formal process modeling. In: Holzinger, A., Simonic, K.-M. (eds.) USAB 2011. LNCS, vol. 7058, pp. 533–546. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25364-5_37CrossRefGoogle Scholar
  7. 7.
    Francken, A.B., Bastiaannet, E., Hoekstra, H.J.: Follow-up in patients with localised primary cutaneous melanoma. Lancet. Oncol. 6(8), 608–621 (2005)CrossRefGoogle Scholar
  8. 8.
    Garbe, C.: Increasing incidence of malignant melanoma. Hautarzt 51(7), 518 (2000).  https://doi.org/10.1007/s001050051166CrossRefGoogle Scholar
  9. 9.
    Garbe, C., et al.: Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. Eur. J. Cancer 46(2), 270–283 (2010)CrossRefGoogle Scholar
  10. 10.
    Hackl, M., Ihle, P.: Krebserkrankungen in Österreich, 6th edn. Statistik Austria, Vienna (2018)Google Scholar
  11. 11.
    Jemal, A., et al.: Recent trends in cutaneous melanoma incidence and death rates in the United States 1992–2006. J. Am. Acad. Dermatol. 65(5), 17 (2011)CrossRefGoogle Scholar
  12. 12.
    Kittler, H., Weitzdorfer, R., Pehamberger, H., Wolff, K., Binder, M.: Compliance with follow-up and prognosis among patients with thin melanomas. Eur. J. Cancer 37(12), 1504–1509 (2001)CrossRefGoogle Scholar
  13. 13.
    Maggi, F.M.: Declarative process mining with the declare component of ProM. In: BPM (Demos), Beijing (2013)Google Scholar
  14. 14.
    Mannhardt, F., De Leoni, M., Reijers, H.A.: The Multi-perspective process explorer. In: BPM (Demos), Innsbruck (2015)Google Scholar
  15. 15.
    Mannhardt, F., De Leoni, M., Reijers, H.A., Van Der Aalst, W.M.: Balanced multi-perspective checking of process conformance. Computing 98(4), 407–437 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mans, R.S., van der Aalst, W.M., Vanwersch, R.J.: Process Mining in Healthcare: Evaluating and Exploiting Operational Healthcare Processes. Springer, publisher location (2015).  https://doi.org/10.1007/978-3-319-16071-9CrossRefGoogle Scholar
  17. 17.
    Murphy, S.N., et al.: Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). J. Am. Med. Inform. Assoc. 17(2), 124–130 (2010)CrossRefGoogle Scholar
  18. 18.
    Overhage, J.M., Ryan, P.B., Reich, C.G., Hartzema, A.G., Stang, P.E.: Validation of a common data model for active safety surveillance research. J. Am. Med. Inform. Assoc. 19(1), 54–60 (2011)CrossRefGoogle Scholar
  19. 19.
    Rinner, C., Duftschmid, G., Wrba, T., Gall, W.: Making the complex data model of a clinical research platform accessible for teaching. J. Innov. Health Inform. 24(1) (2017)Google Scholar
  20. 20.
    Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016)CrossRefGoogle Scholar
  21. 21.
    Rovani, M., Maggi, F.M., de Leoni, M., van der Aalst, W.M.: Declarative process mining in healthcare. Expert Syst. Appl. 42(23), 9236–9251 (2015)CrossRefGoogle Scholar
  22. 22.
    Rozinat, A., Van der Aalst, W.M.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  23. 23.
    Safran, C., et al.: Toward a national framework for the secondary use of health data: an american medical informatics association white paper. J. Am. Med. Inform. Assoc. 14(1), 1–9 (2007)CrossRefGoogle Scholar
  24. 24.
    Tax, N., Lu, X., Sidorova, N., Fahland, D., van der Aalst, W.M.: The Imprecisions of Precision Measures in Process Mining. arXiv preprint arXiv:1705.03303 (2017)
  25. 25.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-17722-4_5CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS)Medical University of ViennaViennaAustria
  2. 2.Research Department of Advanced Information Systems and TechnologyUniversity of Applied Sciences Upper AustriaHagenbergAustria
  3. 3.Faculty of Computer ScienceUniversity of ViennaViennaAustria
  4. 4.Department of DermatologyMedical University of ViennaViennaAustria

Personalised recommendations