Advertisement

Clustering Business Process Activities for Identifying Reference Model Components

  • Jana-Rebecca RehseEmail author
  • Peter Fettke
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)

Abstract

Reference models are special conceptual models that are reused for the design of other conceptual models. They confront stakeholders with the dilemma of balancing the size of a model against its reuse frequency. The larger a reference model is, the better it applies to a specific situation, but the less often these situations occur. This is particularly important when mining a reference model from large process logs, as this often produces complex and unstructured models. To address this dilemma, we present a new approach for mining reference model components by vertically dividing complex process traces and hierarchically clustering activities based on their proximity in the log. We construct a hierarchy of subprocesses, where the lower a component is placed the smaller and the more structured it is. The approach is implemented as a proof-of-concept and evaluated using the data from the 2017 BPI challenge.

Keywords

Reference model mining Activity clustering Reference components Reference modeling Process mining 

References

  1. 1.
    van der Aalst, W.M.P.: Decomposing petri nets for process mining: a generic approach. Distrib. Parallel Databases 31(4), 471–507 (2013)CrossRefGoogle Scholar
  2. 2.
    Antunes, G., Bakhshandelh, M., Borbinha, J., Cardoso, J., Dadashnia, S., et al.: The process matching contest 2015. In: Kolb, J., Leopold, H., Mendling, J. (eds.) Proceedings of the 6th International Workshop on Enterprise Modelling and Information Systems Architectures (EMISA-15), 3–4 September, Innsbruck, Austria. Köllen Druck+Verlag GmbH, Bonn, September 2015Google Scholar
  3. 3.
    Becker, J., Meise, V.: Strategy and organizational frame. In: Becker, J., Kugeler, M., Rosemann, M. (eds.) Process Management. A Guide for the Design of Business Processes, pp. 91–132. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-15190-3_4CrossRefGoogle Scholar
  4. 4.
    Becker, J., Pfeiffer, D., Räckers, M.: Domain specific process modelling in public administrations – the PICTURE-approach. In: Wimmer, M.A., Scholl, J., Grönlund, Å. (eds.) EGOV 2007. LNCS, vol. 4656, pp. 68–79. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74444-3_7CrossRefGoogle Scholar
  5. 5.
    Becker, M., Laue, R.: A comparative survey of business process similarity measures. Comput. Ind. 63(2), 148–167 (2012)CrossRefGoogle Scholar
  6. 6.
    Dadashnia, S., Fettke, P., Hake, P., Klein, S., et al.: Exploring the potentials of artificial intelligence techniques for business process analysis (2017). http://www.win.tue.nl/bpi/lib/exe/fetch.php?media=2017:bpi2017_paper_41.pdf
  7. 7.
    Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Hierarchical clustering. Cluster Analysis, pp. 71–110. Wiley, London (2011)CrossRefGoogle Scholar
  8. 8.
    Fettke, P., Loos, P.: Perspectives on reference modeling. In: Fettke, P., Loos, P. (eds.) Reference Modeling for Business Systems Analysis, pp. 1–20. Idea Group Publishing, London (2007)CrossRefGoogle Scholar
  9. 9.
    Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H.: Mining reference process models and their configurations. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2008. LNCS, vol. 5333, pp. 263–272. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88875-8_47CrossRefGoogle Scholar
  10. 10.
    Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global trace segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 128–139. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12186-9_13CrossRefGoogle Scholar
  11. 11.
    Günther, C., van der Aalst, W.: Mining activity clusters from low-level event logs. In: BETA Working Paper Series, WP 165, Eindhoven University of Technology, Eindhoven (2006)Google Scholar
  12. 12.
    Klinkmüller, C., Weber, I.: Analyzing control flow information to improve the effectiveness of process model matching techniques. Decis. Support Syst. 100, 6–14 (2017)CrossRefGoogle Scholar
  13. 13.
    Li, C., Reichert, M., Wombacher, A.: Mining business process variants: challenges, scenarios, algorithms. Data Knowl. Eng. 70(5), 409–434 (2011)CrossRefGoogle Scholar
  14. 14.
    Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: From low-level events to activities - a pattern-based approach. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 125–141. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_8CrossRefGoogle Scholar
  15. 15.
    Rehse, J.-R., Fettke, P.: Mining reference process models from large instance data. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 11–22. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58457-7_1CrossRefGoogle Scholar
  16. 16.
    Rupprecht, C., Fünffinger, M., Knublauch, H., Rose, T.: Capture and dissemination of experience about the construction of engineering processes. In: Wangler, B., Bergman, L. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 294–308. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45140-4_20CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Weber, I., Li, C., Bass, L., Xu, X., Zhu, L.: Discovering and visualizing operations processes with POD-Discovery and POD-Viz. In: 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 537–544. IEEE (2015)Google Scholar
  19. 19.
    Weske, M.: Business Process Management. Concepts. Languages, Architectures. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-642-28616-2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Information Systems (IWi)German Research Center for Artificial Intelligence (DFKI GmbH) and Saarland UniversitySaarbrückenGermany

Personalised recommendations