A Linear Temporal Logic Model Checking Method over Finite Words with Correlated Transition Attributes

  • Jean-Michel Couvreur
  • Joaquín EzpeletaEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 340)


Temporal logic model checking techniques are applied, in a natural way, to the analysis of the set of finite traces composing a system log. The specific nature of such traces helps in adapting traditional techniques in order to extend their analysis capabilities. The paper presents an adaption of the classical Timed Propositional Temporal Logic to the case of finite words and considers relations among different attributes corresponding to different events. The introduced approach allows the use of general relations between event attributes by means of freeze quantifiers as well as future and past temporal operators. The paper also presents a decision procedure, as well as a study of its computational complexity.


Model checking Freeze Linear Temporal Logic Conformance checking Log analysis 


  1. 1.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Alonso, G., Saltor, F., Ramos, I. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 467–483. Springer, Heidelberg (1998). Scholar
  2. 2.
    Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–203 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bartocci, E., Corradini, F., Merelli, E., Tesei, L.: Detecting synchronisation of biological oscillators by model checking. Theor. Comput. Sci. 411(20), 1999–2018 (2010). Hybrid Automata and Oscillatory Behaviour in Biological SystemsMathSciNetCrossRefGoogle Scholar
  4. 4.
    Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric first-order temporal properties. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) Proceedings of the 28th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2008) (Dagstuhl, Germany, 2008). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008)Google Scholar
  5. 5.
    Brim, L., Dluhoš, P., Šafránek, D., Vejpustek, T.: STL: extending signal temporal logic with signal-value freezing operator. Inf. Comput. 236, 52–67 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-perspective declarative process models. Expert. Syst. Appl. 65, 194–211 (2016)CrossRefGoogle Scholar
  7. 7.
    Chomicki, J., Toman, D.: Temporal Logic in Information Systems. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, vol. 436, pp. 31–70. Springer, Heidelberg (1998). Scholar
  8. 8.
    Chomicki, J., Toman, D.: Temporal logic in database query languages. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 2987–2991. Springer, Heidelberg (2009). Scholar
  9. 9.
    de Leoni, M., van der Aalst, W.: Data-aware process mining: Discovering decisions in processes using alignments. In: Proceedings of the 28th ACM Symposium on Applied Computing (SAC 2013) 18–22 March, Coimbra, Portugal, pp. 113–129 (2013)Google Scholar
  10. 10.
    Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Logic 10(3), 16:1–16:30 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fages, F., Rizk, A.: On temporal logic constraint solving for analyzing numerical data time series. Theor. Comput. Sci. 408(1), 55–65 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Feng, S., Lohrey, M., Quaas, K.: Path checking for MTL and TPTL over data words. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 326–339. Springer, Cham (2015). Scholar
  13. 13.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  14. 14.
    Maggi, F.M., Westergaard, M.: Using timed automata for a priori warnings and planning for timed declarative process models. Int. J. Coop. Inf. Syst. 23(01), 1440003 (2014)CrossRefGoogle Scholar
  15. 15.
    Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg (2008). Scholar
  16. 16.
    Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process mining. In: RADAR+EMISA 2017,, pp. 72–80 (2017)Google Scholar
  17. 17.
    Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-perspective checking of process conformance. Computing 98(4), 407–437 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pesic, M., Schonenberg, H., van der Aalst, W.: DECLARE: full support for loosely-structured processes. In: Proceedings of the 11th IEEE International Enterprise Distributed Object Computing Conference, p. 287. IEEE Computer Society, Washington, DC (2007)Google Scholar
  19. 19.
    Räim, M., Di Ciccio, C., Maggi, F.M., Mecella, M., Mendling, J.: Log-based understanding of business processes through temporal logic query checking. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 75–92. Springer, Heidelberg (2014). Scholar
  20. 20.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  21. 21.
    Schönig, S., Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovery of multi-perspective declarative process models. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 87–103. Springer, Cham (2016). Scholar
  22. 22.
    van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and verification of properties: an approach based on temporal logic. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005). Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Laboratoire d’Informatique Fondamental d’Orléans (LIFO)Université d’OrléansOrléansFrance
  2. 2.Department of Computer Science and Systems Engineering, Aragón Institute of Engineering Research (I3A)University of ZaragozaZaragozaSpain

Personalised recommendations