Advertisement

Mining Local Process Models and Their Correlations

  • Laura GengaEmail author
  • Niek Tax
  • Nicola Zannone
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 340)

Abstract

Mining local patterns of process behavior is a vital tool for the analysis of event data that originates from flexible processes, which in general cannot be described by a single process model without overgeneralizing the allowed behavior. Several techniques for mining local patterns have been developed over the years, including Local Process Model (LPM) mining, episode mining, and the mining of frequent subtraces. These pattern mining techniques can be considered to be orthogonal, i.e., they provide different types of insights on the behavior observed in an event log. In this work, we demonstrate that the joint application of LPM mining and other patter mining techniques provides benefits over applying only one of them. First, we show how the output of a subtrace mining approach can be used to mine LPMs more efficiently. Secondly, we show how instances of LPMs can be correlated together to obtain larger LPMs, thus providing a more comprehensive overview of the overall process. We demonstrate both effects on a collection of real-life event logs.

Notes

Acknowledgement

This work is partially supported by ITEA3 through the APPSTACLE project (15017) and by the RSA-B project SeCludE.

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012)Google Scholar
  3. 3.
    Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03848-8_12CrossRefGoogle Scholar
  4. 4.
    Buijs, J.C.A.M.: Receipt phase of an environmental permit application process (‘WABO’). CoSeLoG project (2014).  https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
  5. 5.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discovering process trees. In: CEC, pp. 1–8. IEEE (2012)Google Scholar
  6. 6.
    Burges, C., et al.: Learning to rank using gradient descent. In: ICML, pp. 89–96 (2005)Google Scholar
  7. 7.
    Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discovering petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85758-7_26CrossRefGoogle Scholar
  8. 8.
    Chapela-Campa, D., Mucientes, M., Lama, M.: Discovering infrequent behavioral patterns in process models. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 324–340. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65000-5_19CrossRefGoogle Scholar
  9. 9.
    Diamantini, C., Genga, L., Potena, D.: Behavioral process mining for unstructured processes. J. Intell. Inf. Syst. 47(1), 5–32 (2016)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.: SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. 15(1), 3389–3393 (2014)zbMATHGoogle Scholar
  12. 12.
    Fournier-Viger, P., Lin, J.C.W., Vo, B., Chi, T.T., Zhang, J., Le, H.B.: A survey of itemset mining. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 7(4) (2017)Google Scholar
  13. 13.
    Genga, L., Potena, D., Martino, O., Alizadeh, M., Diamantini, C., Zannone, N.: Subgraph mining for anomalous pattern discovery in event logs. In: Appice, A., Ceci, M., Loglisci, C., Masciari, E., Raś, Z.W. (eds.) NFMCP 2016. LNCS (LNAI), vol. 10312, pp. 181–197. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61461-8_12CrossRefGoogle Scholar
  14. 14.
    Greco, G., Guzzo, A., Manco, G., Saccà, D.: Mining and reasoning on workflows. IEEE Trans. Knowl. Data Eng. 17(4), 519–534 (2005)CrossRefGoogle Scholar
  15. 15.
    Huang, K.Y., Chang, C.H.: Efficient mining of frequent episodes from complex sequences. Inf. Syst. 33(1), 96–114 (2008)CrossRefGoogle Scholar
  16. 16.
    Huang, Z., Lu, X., Duan, H.: On mining clinical pathway patterns from medical behaviors. Artif. Intell. Med. 56(1), 35–50 (2012)CrossRefGoogle Scholar
  17. 17.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)CrossRefGoogle Scholar
  18. 18.
    Jonyer, I., Cook, D., Holder, L.: Graph-based hierarchical conceptual clustering. J. Mach. Learn. Res. 2, 19–43 (2002)zbMATHGoogle Scholar
  19. 19.
    Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes in event logs. In: Ceravolo, P., Russo, B., Accorsi, R. (eds.) SIMPDA 2014. LNBIP, vol. 237, pp. 1–31. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27243-6_1CrossRefGoogle Scholar
  20. 20.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06257-0_6CrossRefGoogle Scholar
  21. 21.
    Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: SIGMOD Workshop on Research Issues in DM&KD, pp. 2–11. ACM (2003)Google Scholar
  22. 22.
    Lu, X., et al.: Semi-supervised log pattern detection and exploration using event concurrence and contextual information. In: Panetto, H., et al. (eds.) CoopIS. LNCS, vol. 10573. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-319-69462-7_11CrossRefGoogle Scholar
  23. 23.
    Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: CIDM, pp. 192–199. IEEE (2011)Google Scholar
  24. 24.
    Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process mining. In: RADAR+EMISA, pp. 72–80. CEUR (2017)Google Scholar
  25. 25.
    Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997)CrossRefGoogle Scholar
  26. 26.
    Măruşter, L., van Beest, N.R.T.P.: Redesigning business processes: a methodology based on simulation and process mining techniques. Knowl. Inf. Syst. 21(3), 267–297 (2009)CrossRefGoogle Scholar
  27. 27.
    Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did i misbehave? Diagnostic information in compliance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 262–278. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32885-5_21CrossRefGoogle Scholar
  28. 28.
    Reisig, W.: Petri Nets: An Introduction, vol. 4. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-69968-9CrossRefzbMATHGoogle Scholar
  29. 29.
    Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: Mining the organisational perspective in agile business processes. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 37–52. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19237-6_3CrossRefGoogle Scholar
  30. 30.
    Tax, N., Dumas, M.: Mining non-redundant sets of generalizing patterns from sequence databases. arXiv preprint arXiv:1712.04159 (2017)
  31. 31.
    Tax, N., Genga, L., Zannone, N.: On the use of hierarchical subtrace mining for efficient local process model mining. In: Proceedings of International Symposium on Data-driven Process Discovery and Analysis, pp. 8–22. CEUR-WS.org (2017)Google Scholar
  32. 32.
    Tax, N., Sidorova, N., van der Aalst, W.M.P., Haakma, R.: Heuristic approaches for generating local process models through log projections. In: CIDM, pp. 1–8. IEEE (2016)Google Scholar
  33. 33.
    Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Mining local process models. J. Innov. Digit. Ecosyst. 3(2), 183–196 (2016)CrossRefGoogle Scholar
  34. 34.
    Verbeek, H.M.W., Buijs, J.C.A., Van Dongen, B.F., van der Aalst, W.M.P.: ProM 6: the process mining toolkit. In: BPM Demos, vol. 615, pp. 34–39. CEUR (2010)Google Scholar
  35. 35.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68746-7_24CrossRefGoogle Scholar
  36. 36.
    van de Werff, T., Niemantsverdriet, K., van Essen, H., Eggen, B.: Evaluating interface characteristics for shared lighting systems in the office environment. In: DIS, pp. 209–220. ACM (2017)Google Scholar
  37. 37.
    Zhou, W., Liu, H., Cheng, H.: Mining closed episodes from event sequences efficiently. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6118, pp. 310–318. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13657-3_34CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations