Advertisement

Biodegradation of Petroleum Hydrocarbons in the Deep Sea

  • Joel E. KostkaEmail author
  • Samantha B. Joye
  • Will Overholt
  • Paul Bubenheim
  • Steffen Hackbusch
  • Stephen R. Larter
  • Andreas Liese
  • Sara A. Lincoln
  • Angeliki Marietou
  • Rudolf Müller
  • Nuttapol Noirungsee
  • Thomas B. P. Oldenburg
  • Jagoš R. Radović
  • Juan Viamonte
Chapter

Abstract

The Deepwater Horizon (DWH) discharge is unique in that it represents the first large spill that occurred in the deep sea, and unparalleled volumes of chemical dispersant were applied during emergency response efforts. Thus, the DWH incident raised new challenges with regard to predictions of petroleum hydrocarbon (PHC) biodegradation and the fate of discharged hydrocarbons in the deep sea, which is permanently cold (~4 °C) and exposed to high hydrostatic pressure (1 MPa per 100 m). Although extensive information is available on the rates and controls of PHC biodegradation in marine environments, relatively few studies have been conducted under conditions resembling the deep sea. In particular, hydrostatic pressure is a key environmental parameter that has been largely overlooked in biodegradation studies, due to methodological challenges and the difficulty to obtain samples. Considering the rapid expansion of oil and gas drilling into deeper waters, there is an urgent need to improve understanding of the influence of low temperature and high pressure on biodegradation in order to better constrain the fate of hydrocarbons in the deep sea. This chapter addresses the current understanding of deep sea PHC biodegradation, highlighting discoveries made during the scientific response to the DWH disaster.

Keywords

Biodegradation Deep sea Pressure Temperature Petroleum hydrocarbon Hydrocarbon-degrading bacteria 

References

  1. Bagby SC, Reddy CM, Aeppli C, Fisher GB, Valentine DL (2017) Persistence and biodegradation of oil at the ocean floor following Deepwater Horizon. Proc Natl Acad Sci 114(1):E9CrossRefGoogle Scholar
  2. Biddle JF, White JR, Teske AP, House CH (2011) Metagenomics of the subsurface Brazos-Trinity Basin (IODP site 1320): comparison with other sediment and pyrosequenced metagenomes. ISME J 5:1038–1047CrossRefGoogle Scholar
  3. Bowles MW, Samarkin VA, Joye SB (2011) Improved measurement of microbial activity in deep-sea sediments at in situ pressure and methane concentration. Limnol Oceanogr Methods 9(10):499–506.  https://doi.org/10.4319/lom.2011.9.499CrossRefGoogle Scholar
  4. Brooks GR, Larson RA, Schwing PT, Romero I, Moore C, Reichart GJ, Jilbert T, Chanton JP, Hastings DW, Overholt WA, Marks KP, Kostka JE, Holmes CW, Hollander D (2015) Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout. PLoS One 10:1–24Google Scholar
  5. Camilli R, Reddy CM, Yoerger DR, Van Mooy BAS, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330(6001):201–204.  https://doi.org/10.1126/science.1195223CrossRefGoogle Scholar
  6. Case DH, Ijiri A, Morono Y, Tavormina P, Orphan VJ, Inagaki F (2017) Aerobic and anaerobic methanotrophic communities associated with methane hydrates exposed on the seafloor: a high-pressure sampling and stable isotope-incubation experiment. Front Microbiol 8:2569CrossRefGoogle Scholar
  7. Chanton JP, Cherrier J, Wilson RM, Sarkodee-Adoo J, Bosman S, Mickle A, Graham WM (2012) Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of Mexico. Environ Res Lett 7:045303CrossRefGoogle Scholar
  8. Crespo-Medina M, Meile CD, Hunter KS, Diercks AR, Asper VL, Orphan VJ, Joye SB (2014) The rise and fall of methanotrophy following a Deepwater oil-well blowout. Nat Geosci 7(6):423–427.  https://doi.org/10.1038/ngeo2156CrossRefGoogle Scholar
  9. Daly KL, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 13:18–33.  https://doi.org/10.1016/j.ancene.2016.01.006CrossRefGoogle Scholar
  10. Deusner C, Meyer V, Ferdelman TG (2009) High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Biotechnol Bioeng:105.  https://doi.org/10.1002/bit.22553CrossRefGoogle Scholar
  11. Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, M. Piceno Y, Reid FC, Stringfellow WT, Tom LM (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47(19):10860–10867CrossRefGoogle Scholar
  12. Fasca H, de Castilho LV, de Castilho JFM, Pasqualino IP, Alvarez VM, de Azevedo Jurelevicius D, Seldin L (2018) Response of marine bacteria to oil contamination and to high pressure and low temperature deep sea conditions. MicrobiologyOpen 7(2):e00550CrossRefGoogle Scholar
  13. Ferguson RMW, Gontikaki E, Anderson JA, Witte U (2017) The variable influence of dispersant on degradation of oil hydrocarbons in subarctic deep-sea sediments at low temperatures (0–5 °C). Sci Rep 7(1):2253.  https://doi.org/10.1038/s41598-017-02475-9CrossRefGoogle Scholar
  14. Grossi V, Yakimov MM, Ali BA, Tapilatu Y, Cuny P, Goutx M, LaCono V, Giuliano L, Tamburini C (2010) Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain #5. Environ Microbiol 12(7):2020–2033.  https://doi.org/10.1111/j.1462-2920.2010.02213.xCrossRefGoogle Scholar
  15. Hazen TC, Prince RC (2015) Marine oil biodegradation. Environ Sci Technol 50:2121–2129CrossRefGoogle Scholar
  16. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D'haeseleer P, Holman HY, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading Bacteria. Science 330(6001):204–208.  https://doi.org/10.1126/science.1195979CrossRefGoogle Scholar
  17. Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):17CrossRefGoogle Scholar
  18. Head IM, Gray ND, Larter SR (2014) Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management. Front Microbiol 5:566.  https://doi.org/10.3389/fmicb.2014.00566CrossRefGoogle Scholar
  19. Horikoshi K (1998) Barophiles: deep-sea microorganisms adapted to an extreme environment. Curr Opin Microbiol 1(3):291–295CrossRefGoogle Scholar
  20. Jørgensen BB, Boetius A (2007) Feast and famine — microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781CrossRefGoogle Scholar
  21. Joye SB (2015) Deepwater Horizon, 5 years on. Science 349(6248):592–593.  https://doi.org/10.1126/science.aab4133CrossRefGoogle Scholar
  22. Joye SB, MacDonald IR, Leifer I, Asper V (2011) Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nat Geosci 4(3):160–164. http://www.nature.com/ngeo/journal/v4/n3/abs/ngeo1067.html#supplementary-informationCrossRefGoogle Scholar
  23. Joye SB, Teske AP, Kostka JE (2014) Microbial dynamics following the Macondo oil well blowout across Gulf of Mexico environments. Bioscience 64(9):766–777.  https://doi.org/10.1093/biosci/biu121CrossRefGoogle Scholar
  24. Joye SB, Kleindienst S, Gilbert JA, Handley KM, Weisenhorn P, Overholt WA, Kostka JE (2016) Responses of microbial communities to hydrocarbon exposures. Oceanography 29(1):136–149CrossRefGoogle Scholar
  25. Joye S, Kleindienst S, Peña-Montenegro TD (2018) SnapShot: microbial hydrocarbon bioremediation. Cell 172(6):1336–1336.e1331.  https://doi.org/10.1016/j.cell.2018.02.059CrossRefGoogle Scholar
  26. Kallmeyer J, Boetius A (2004) Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl Environ Microbiol 70(2):1231–1233.  https://doi.org/10.1128/AEM.70.2.1231-1233.2004CrossRefGoogle Scholar
  27. Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra LM, Yvon-Lewis SA, Weber TC (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331(6015):312–315.  https://doi.org/10.1126/science.1199697CrossRefGoogle Scholar
  28. Kimes NE, Callaghan AV, Suflita JM, Morris PJ (2014) Microbial transformation of the Deepwater Horizon oil spill – past, present, and future perspectives. Front Microbiol 5:603CrossRefGoogle Scholar
  29. King GM, Kostka JE, Hazen TC, Sobecky PA (2015) Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea. Annu Rev Mar Sci 7:377–401.  https://doi.org/10.1146/annurev-marine-010814-015543CrossRefGoogle Scholar
  30. Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB (2015a) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci 112(48).  https://doi.org/10.1073/pnas.1507380112CrossRefGoogle Scholar
  31. Kleindienst S, Paul JH, Joye SB (2015b) Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nat Rev Microbiol 13(6):388–396.  https://doi.org/10.1038/nrmicro3452CrossRefGoogle Scholar
  32. Kleindienst S, Grim S, Sogin M, Bracco A, Crespo-Medina M, Joye SB (2015c) Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J.  https://doi.org/10.1038/ismej.2015.121CrossRefGoogle Scholar
  33. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315Google Scholar
  34. Liu J, Bacosa HP, Liu Z (2017) Potential environmental factors affecting oil-degrading bacterial populations in deep and surface waters of the northern Gulf of Mexico. Front Microbiol 7:2131CrossRefGoogle Scholar
  35. Marietou A, Chastain R, Beulig F, Scoma A, Hazen TC, Bartlett DH (2018) The effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 9:808CrossRefGoogle Scholar
  36. Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, Fortney JL, Han J, Holman H-YN, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6(9):1715–1727.  https://doi.org/10.1038/ismej.2012.59CrossRefGoogle Scholar
  37. Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D, Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA, Jansson JK (2014) Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J 8(7):1464–1475CrossRefGoogle Scholar
  38. McNutt MK, Camilli R, Crone TJ, Guthrie GD, Hsieh PA, Ryerson TB, Savas O, Shaffer F (2012) Review of flow rate estimates of the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20260–20267CrossRefGoogle Scholar
  39. Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha Tarouco P, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118.  https://doi.org/10.1159/000441358CrossRefGoogle Scholar
  40. Nguyen UT, Lincoln SA, Juárez AGV, Schedler M, Macalady JL, Müller R, Freeman KH (2018) The influence of pressure on crude oil biodegradation in shallow and deep Gulf of Mexico sediments. PloS one 13(7):e0199784CrossRefGoogle Scholar
  41. Norton CG, Suedmeyer J, Oderkerk B, Fieback TM (2014) High pressure and temperature optical flow cell for Near-Infra-Red spectroscopic analysis of gas mixtures. Rev Sci Instrum 85(5):053101.  https://doi.org/10.1063/1.4873195CrossRefGoogle Scholar
  42. Nunoura T, Soffientino B, Blazejak A, Kakuta J, Oida H, Schippers A, Takai K (2009) Subseafloor microbial communities associated with rapid turbidite deposition in the Gulf of Mexico continental slope (IODP Expedition 308). FEMS Microbiol Ecol 69:410–424CrossRefGoogle Scholar
  43. Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep-Sea Res II 57:2008–2021CrossRefGoogle Scholar
  44. Overholt W (2018) The response of marine benthic microbial populations to the Deepwater Horizon oil spill, Ph.D. Dissertation, Georgia Institute of Technology, pp 248Google Scholar
  45. Passow U, Ziervogel K, Asper V, Diercks A (2012) Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7(3):035301CrossRefGoogle Scholar
  46. Prince RC, Nash GW, Hill SJ (2016) The biodegradation of crude oil in the deep ocean. Mar Pollut Bull 111(1):354–357CrossRefGoogle Scholar
  47. Prince RC, Butler JD, Redman AD (2017) The rate of crude oil biodegradation in the sea. Environ Sci Technol 51(3):1278–1284CrossRefGoogle Scholar
  48. Quigg A, Passow U, Daly KL, Burd A, Hollander DJ, Schwing PT, Lee K (2020) Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) events: learning from the past to predict the future (Chap. 12). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, ChamGoogle Scholar
  49. Rahsepar S, Smit MPJ, Murk AJ, Rijnaarts HHM, Langenhoff AAM (2016) Chemical dispersants: oil biodegradation friend or foe? Mar Pollut Bull 108(1):113–119.  https://doi.org/10.1016/j.marpolbul.2016.04.044CrossRefGoogle Scholar
  50. Rodriguez-r LM, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT (2015) Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISME JGoogle Scholar
  51. Romero IC, Toro-Farmer G, Diercks A-R, Schwing P, Muller-Karger F, Murawski S, Hollander DJ (2017) Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ Pollut 228:179–189.  https://doi.org/10.1016/j.envpol.2017.05.019CrossRefGoogle Scholar
  52. Schedler M, Hiessl R, Valladares Juarez A, Gust G, Muller R (2014) Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express 4(1):77CrossRefGoogle Scholar
  53. Schwarz JR, Walker JD, Colwell RR (1974) Deep-sea bacteria: growth and utilization of hydrocarbons at ambient and in situ pressure. Appl Microbiol 28(6):982–986Google Scholar
  54. Schwarz JR, Walker JD, Colwell RR (1975) Deep-sea bacteria: growth and utilization of n-hexadecane at in situ temperature and pressure. Can J Microbiol 21(5):682–687CrossRefGoogle Scholar
  55. Scoma A, Barbato M, Hernandez-Sanabria E, Mapelli F, Daffonchio D, Borin S, Boon N (2016a) Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria? Sci Rep 6:23526CrossRefGoogle Scholar
  56. Scoma A, Barbato M, Borin S, Daffonchio D, Boon N (2016b) An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column. Sci Rep 6:31316.  https://doi.org/10.1038/srep31316CrossRefGoogle Scholar
  57. Shin B (2018) Hydrocarbon degradation under contrasting redox conditions in shallow coastal sediments of the northern Gulf of Mexico, Ph.D. Dissertation, Georgia Institute of Technology, pp 160Google Scholar
  58. Shin B, Kim M, Zengler K, Chin KJ, Overholt WA, Gieg LM, Konstantinidis KT, Kostka JE (2019) Anaerobic degradation of hexadecane and phenanthrene coupled to sulfate reduction by enriched consortia from northern Gulf of Mexico seafloor sediment. Sci Rep 9(1):1239Google Scholar
  59. Sibert R, Harrison S, Joye SB (2017) Protocols for radiotracer estimation of primary hydrocarbon oxidation in oxygenated seawater. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols: field studies. Springer, Berlin, Heidelberg, pp 263–276Google Scholar
  60. Simonato F, Campanaro S, Lauro FM, Vezzi A, D’Angelo M, Vitulo N, Valle G, Bartlett DH (2006) Piezophilic adaptation: a genomic point of view. J Biotechnol 126(1):11–25CrossRefGoogle Scholar
  61. Soni BK, Conrad J, Kelley R, Srivastava V (1998) Effect of temperature and pressure on growth and methane utilization by several methanotrophic cultures. Appl Biochem Biotechnol 70–72(1):729–738CrossRefGoogle Scholar
  62. Tapilatu Y, Acquaviva M, Guigue C, Miralles G, Bertrand JC, Cuny P (2010a) Isolation of alkane-degrading bacteria from deep-sea Mediterranean sediments. Lett Appl Microbiol 50(2):234–236CrossRefGoogle Scholar
  63. Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand J-C, Cuny P (2010b) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14(2):225–231.  https://doi.org/10.1007/s00792-010-0301-zCrossRefGoogle Scholar
  64. Timmers PHA, Gieteling J, Widjaja-Greefkes HCA, Plugge CM, Stams AJM, Lens PNL, Meulepas RJW (2015) Growth of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a high-pressure membrane capsule bioreactor. Appl Environ Microbiol 81(4):1286–1296CrossRefGoogle Scholar
  65. Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Kinnaman FS, Yvon-Lewis S, Du M, Chan EW, Garcia Tigreros F, Villanueva CJ (2010) Propane respiration jump-starts microbial response to a deep oil spill. Science 330(6001):208–211.  https://doi.org/10.1126/science.1196830CrossRefGoogle Scholar
  66. Valentine DL, Mezić I, Maćešić S, Črnjarić-Žic N, Ivić S, Hogan PJ, Fonoberov VA, Loire S (2012) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Natl Acad Sci U S A 109:20286–20291CrossRefGoogle Scholar
  67. Valentine DL, Fisher GB, Bagby SC, Nelson RK, Reddy CM, Sylva SP, Woo MA (2014) Fallout plume of submerged oil from Deepwater Horizon. Proc Natl Acad Sci 111(45):15906–15911.  https://doi.org/10.1073/pnas.1414873111CrossRefGoogle Scholar
  68. Valladares Juárez AG, Kadimesetty HS, Achatz DE, Schedler M, Muller R (2015) Online monitoring of crude oil biodegradation at elevated pressures. IEEE J Sel Top Appl Earth Obs Remote Sens 8(2):872–878.  https://doi.org/10.1109/JSTARS.2014.2347896CrossRefGoogle Scholar
  69. Xie Z, Jian H, Jin Z, Xiao X (2018) Enhancing the adaptability of the deep-sea bacterium Shewanella piezotolerans WP3 to high pressure and low temperature by experimental evolution under H2O2 stress. Appl Environ Microbiol 84(5):e02342–e02317Google Scholar
  70. Yang T, Nigro LM, Gutierrez T, D’Ambrosio L, Joye SB, Highsmith R, Teske A (2016) Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep-Sea Res II Top Stud Oceanogr 129:282–291.  https://doi.org/10.1016/j.dsr2.2014.01.014CrossRefGoogle Scholar
  71. Yayanos AA (1995) Microbiology to 10,500 meters in the Deep Sea. Annu Rev Microbiol 49(1):777–805CrossRefGoogle Scholar
  72. Zhang Y, Henrie JP, Bursens J, Boon N (2010) Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor. Bioresour Technol 101(9):3132–3138.  https://doi.org/10.1016/j.biortech.2009.11.103CrossRefGoogle Scholar
  73. ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57(2):179Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Joel E. Kostka
    • 1
    Email author
  • Samantha B. Joye
    • 2
  • Will Overholt
    • 3
  • Paul Bubenheim
    • 4
  • Steffen Hackbusch
    • 4
  • Stephen R. Larter
    • 5
  • Andreas Liese
    • 4
  • Sara A. Lincoln
    • 6
  • Angeliki Marietou
    • 7
  • Rudolf Müller
    • 4
  • Nuttapol Noirungsee
    • 4
  • Thomas B. P. Oldenburg
    • 5
  • Jagoš R. Radović
    • 5
  • Juan Viamonte
    • 5
  1. 1.Georgia Institute of Technology, School of Biology and Earth & Atmospheric SciencesAtlantaUSA
  2. 2.Department of Marine SciencesUniversity of GeorgiaAthensUSA
  3. 3.Friedrich Schiller University Jena, Institute of BiodiversityJenaGermany
  4. 4.Hamburg University of Technology, Institute of Technical BiocatalysisHamburgGermany
  5. 5.Department of GeoscienceUniversity of Calgary, PRGCalgaryCanada
  6. 6.Department of GeosciencesThe Pennsylvania State UniversityUniversity ParkUSA
  7. 7.Department of Bioscience-MicrobiologyAarhus UniversityAarhusDenmark

Personalised recommendations