Skip to main content

Genetics and Oil: Transcriptomics, Epigenetics, and Population Genomics as Tools to Understand Animal Responses to Exposure Across Different Time Scales

  • Chapter
  • First Online:
Book cover Deep Oil Spills

Abstract

Exposure to oil causes basic organismal responses rooted in the genetic architecture of specific species. At the most basic level, exposure leads to immediate changes in gene expression related to xenobiotic metabolism but also changes in expression that may lead to impairment of important biological processes and abnormal development. While many responses amount to transient changes in function, some related to epigenetic gene regulation may be more permanent, persisting long after cessation of exposure. Further, some epigenetic change may be heritable, with oil-like responses persisting in later generations that were never directly exposed. Finally, exposure can create mass-mortality events that change contemporary levels of genomic variation and/or lead to selective regimes that favor individuals that carry allelic variants making them more resistant to the negative effects of oil exposure. The latter issue may be compounded if low levels of oil remain in the system leading to chronic exposure and continued selection. This chapter will review molecular techniques and “omics” tools that have allowed researchers a better understanding of the genetic underpinnings of organismal response to oil exposure, while highlighting future directions for this type of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams SM (1990) Status and use of biological indicators for evaluating the effects of stress in fish. Am Fish Soc Symp 8:1–8

    Google Scholar 

  • Al-Sabti K (1985) Frequency of chromosomal aberrations in the rainbow trout, Salmo gairdneri Rich., exposed to five pollutants. J Fish Biol 26(1):13–19. https://doi.org/10.1111/j.1095-8649.1985.tb04235.x

    Article  CAS  Google Scholar 

  • Aluru N, Kuo E, Helfrich LW, Karchner SI, Linney EA, Pais JE, Franks DG (2015) Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio). Toxicol Appl Pharmacol 284(2):142–151. https://doi.org/10.1016/j.taap.2015.02.016

    Article  CAS  Google Scholar 

  • Anders S, Pyl PT, Huber W (2014) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  Google Scholar 

  • Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260. https://doi.org/10.1038/nrmicro2319

    Article  CAS  Google Scholar 

  • Androutsopoulos VP, Tsatsakis AM, Spandidos DA (2009) Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 9(1):187. https://doi.org/10.1186/1471-2407-9-187

    Article  CAS  Google Scholar 

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. In: Cragg JB (ed) Advances in ecological research, vol 7. Academic Press, pp 1–85. https://doi.org/10.1016/S0065-2504(08)60202-0

    Google Scholar 

  • Behjati S, Tarpey PS (2013) What is next generation sequencing? Arch Dis Child Educ Pract Ed 98(6):236

    Article  Google Scholar 

  • Belfiore NM, Anderson SL (2001) Effects of contaminants on genetic patterns in aquatic organisms: a review. Mutat Res 489(2):97–122. https://doi.org/10.1016/S1383-5742(01)00065-5

    Article  CAS  Google Scholar 

  • Bickham JW, Sandhu S, Hebert PDN, Chikhi L, Athwal R (2000) Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutat Res 463(1):33–51. https://doi.org/10.1016/S1383-5742(00)00004-1

    Article  CAS  Google Scholar 

  • Bijlsma R, Loeschcke V (2011) Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 5(2):117–129. https://doi.org/10.1111/j.1752-4571.2011.00214.x

    Article  Google Scholar 

  • Blake GET, Watson ED (2016) Unravelling the complex mechanisms of transgenerational epigenetic inheritance. Curr Opin Chem Biol 33:101–107. https://doi.org/10.1016/j.cbpa.2016.06.008

    Article  CAS  Google Scholar 

  • Brette F, Machado B, Cros C, Incardona JP, Scholz NL, Block BA (2014) Crude oil impairs cardiac excitation-contraction coupling in fish. Science 343(6172):772–776

    Article  CAS  Google Scholar 

  • Carls MG, Rice SD, Hose JE (1999) Sensitivity of fish embryos to weathered crude oil: part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval pacific herring (Clupea pallasi). Environ Toxicol Chem 18(3):481–493. https://doi.org/10.1002/etc.5620180317

    Article  CAS  Google Scholar 

  • Carney SA, Chen J, Burns CG, Xiong KM, Peterson RE, Heideman W (2006) Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol Pharmacol 70(2):549–561. https://doi.org/10.1124/mol.106.025304

    Article  CAS  Google Scholar 

  • Chanda S, Dasgupta UB, GuhaMazumder D, Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N, Chatterjee D (2006) DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 89(2):431–437. https://doi.org/10.1093/toxsci/kfj030

    Article  CAS  Google Scholar 

  • Chen G, Shi T, Shi L (2017) Characterizing and annotating the genome using RNA-seq data. Sci China Life Sci 60(2):116–125

    Article  CAS  Google Scholar 

  • Collotta M, Bertazzi PA, Bollati V (2013) Epigenetics and pesticides. Toxicology 307:35–41. https://doi.org/10.1016/j.tox.2013.01.017

    Article  CAS  Google Scholar 

  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17(1):13

    Article  Google Scholar 

  • Corrales J, Thornton C, White M, Willett KL (2014) Multigenerational effects of benzo[a]pyrene exposure on survival and developmental deformities in zebrafish larvae. Aquat Toxicol 148:16–26. https://doi.org/10.1016/j.aquatox.2013.12.028

    Article  CAS  Google Scholar 

  • Das PM, Ramachandran K, vanWert J, Singal R (2004) Chromatin immunoprecipitation assay. BioTechniques 37(6):961–969. https://doi.org/10.2144/04376rv01

    Article  CAS  Google Scholar 

  • DeAngelis JT, Farrington WJ, Tollefsbol TO (2008) An overview of epigenetic assays. Mol Biotechnol 38(2):179–183. https://doi.org/10.1007/s12033-007-9010-y

    Article  CAS  Google Scholar 

  • Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43(1):309–334. https://doi.org/10.1146/annurev.pharmtox.43.100901.135828

    Article  CAS  Google Scholar 

  • Di Giulio RT, Clark BW (2015) The Elizabeth River story: a case study in evolutionary toxicology. J Toxicol Environ Heal B 18(6):259–298. https://doi.org/10.1080/15320383.2015.1074841

    Article  CAS  Google Scholar 

  • Diamante G, Xu EG, Chen S, Mager E, Grosell M, Schlenk D (2017) Differential expression of microRNAs in embryos and larvae of Mahi-Mahi (Coryphaena hippurus) exposed to Deepwater Horizon oil. Environ Sci Technol Lett 4(12):523–529. https://doi.org/10.1021/acs.estlett.7b00484

    Article  CAS  Google Scholar 

  • Edmunds RC, Gill J, Baldwin DH, Linbo TL, French BL, Brown TL, Esbaugh AJ, Mager EM, Stieglitz J, Hoenig R (2015) Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi. Sci Rep 5:17326

    Article  CAS  Google Scholar 

  • Eeva T, Belskii E, Kuranov B (2006) Environmental pollution affects genetic diversity in wild bird populations. Mutat Res 608(1):8–15. https://doi.org/10.1016/j.mrgentox.2006.04.021

    Article  CAS  Google Scholar 

  • Frank SA (2010) Somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc Natl Acad Sci 107(suppl 1):1725–1730

    Article  CAS  Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63. https://doi.org/10.1016/j.biocon.2013.12.036

    Article  Google Scholar 

  • Frederick LA, Van Veld PA, Rice CD (2007) Bioindicators of immune function in creosote-adapted estuarine killifish, Fundulus heteroclitus. J Toxic Environ Health A 70(17):1433–1442. https://doi.org/10.1080/15287390701382910

    Article  CAS  Google Scholar 

  • Gao D, Wang C, Xi Z, Zhou Y, Wang Y, Zuo Z (2017) Early-life benzo[a]pyrene exposure causes neurodegenerative syndromes in adult Zebrafish (Danio rerio) and the mechanism involved. Toxicol Sci 157(1):74–84. https://doi.org/10.1093/toxsci/kfx028

    Article  CAS  Google Scholar 

  • Garcia TI, Shen Y, Crawford D, Oleksiak MF, Whitehead A, Walter RB (2012) RNA-Seq reveals complex genetic response to Deepwater Horizon oil release in Fundulus grandis. BMC Genomics 13(1):474

    Article  CAS  Google Scholar 

  • Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339(6118):448

    Article  CAS  Google Scholar 

  • Hahn ME, Karchner SI, Evans BR, Franks DG, Merson RR, Lapseritis JM (2006) Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. J Exp Zool A Comp Exp Biol 305A(9):693–706. https://doi.org/10.1002/jez.a.323

    Article  CAS  Google Scholar 

  • Handley-Goldstone HM, Grow MW, Stegeman JJ (2005) Cardiovascular gene expression profiles of dioxin exposure in Zebrafish embryos. Toxicol Sci 85(1):683–693. https://doi.org/10.1093/toxsci/kfi116

    Article  CAS  Google Scholar 

  • Haensly WE, Neff JM, Sharp JR, Morris AC, Bedgood MF, Boem PD (1982) Histopathology of Pleuronectes platessa L. from Aber Wrac'h and Aber Benoit, Brittany, France: long-term effects of the Amoco Cadiz crude oil spill. J Fish Dis 5(5):365–391. https://doi.org/10.1111/j.1365-2761.1982.tb00494.x

    Article  Google Scholar 

  • Hanson MA, Skinner MK (2016) Developmental origins of epigenetic transgenerational inheritance. Environmental Epigenetics 2(1):dvw002–dvw002. https://doi.org/10.1093/eep/dvw002

    Article  CAS  Google Scholar 

  • Harrigan JA, Vezina CM, McGarrigle BP, Ersing N, Box HC, Maccubbin AE, Olson JR (2004) DNA adduct formation in precision-cut rat liver and lung slices exposed to benzo[a]pyrene. Toxicol Sci 77(2):307–314. https://doi.org/10.1093/toxsci/kfh030

    Article  Google Scholar 

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157(1):95–109. https://doi.org/10.1016/j.cell.2014.02.045

    Article  CAS  Google Scholar 

  • Hilscherova K, Machala M, Kannan K, Blankenship AL, Giesy JP (2000) Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Environ Sci Pollut Res 7(3):159–171. https://doi.org/10.1065/espr2000.02.017

    Article  CAS  Google Scholar 

  • Husseneder C, Donaldson JR, Foil LD (2016) Impact of the 2010 Deepwater Horizon oil spill on population size and genetic structure of horse flies in Louisiana marshes. Sci Rep 6:18968. https://doi.org/10.1038/srep18968

    Article  CAS  Google Scholar 

  • Incardona JP (2017) Molecular mechanisms of crude oil developmental toxicity in fish. Arch Environ Contam Toxicol 73(1):19–32

    Article  CAS  Google Scholar 

  • International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695. https://doi.org/10.1038/nature03154

    Article  CAS  Google Scholar 

  • Jiang L, Zhang J, Wang J-J, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, Cai J, Zhang J, Huang X, Yu M, Wang X, Liu F, Wu C-I, He C, Zhang B, Ci W, Liu J (2013) Sperm, but not oocyte, DNA methylome is inherited by Zebrafish early embryos. Cell 153(4):773–784. https://doi.org/10.1016/j.cell.2013.04.041

    Article  CAS  Google Scholar 

  • Kanherkar RR, Bhatia-Dey N, Csoka AB (2014) Epigenetics across the human lifespan. Front Cell Dev Biol 2:49. https://doi.org/10.3389/fcell.2014.00049

    Article  Google Scholar 

  • Klekowski EJ, Corredor JE, Morell JM, Del Castillo CA (1994) Petroleum pollution and mutation in mangroves. Mar Pollut Bull 28(3):166–169. https://doi.org/10.1016/0025-326X(94)90393-X

    Article  CAS  Google Scholar 

  • Knecht AL, Truong L, Marvel SW, Reif DM, Garcia A, Lu C, Simonich MT, Teeguarden JG, Tanguay RL (2017) Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo[a]pyrene in zebrafish. Toxicol Appl Pharmacol 329:148–157. https://doi.org/10.1016/j.taap.2017.05.033

    Article  CAS  Google Scholar 

  • Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5(1). https://doi.org/10.3390/biology5010003

    Article  Google Scholar 

  • Labbé C, Robles V, Herraez MP (2017) Epigenetics in fish gametes and early embryo. Aquaculture 472:93–106. https://doi.org/10.1016/j.aquaculture.2016.07.026

    Article  CAS  Google Scholar 

  • Lanham KA, Plavicki J, Peterson RE, Heideman W (2014) Cardiac myocyte-specific AHR activation phenocopies TCDD-induced toxicity in zebrafish. Toxicol Sci 141(1):141–154

    Article  CAS  Google Scholar 

  • Lee CE, Remfert JL, Opgenorth T, Lee KM, Stanford E, Connolly JW, Kim J, Tomke S (2017) Evolutionary responses to crude oil from the Deepwater Horizon oil spill by the copepod Eurytemora affinis. Evol Appl 10(8):813–828. https://doi.org/10.1111/eva.12502

    Article  CAS  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12(1):323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  Google Scholar 

  • Li L, Zhang T, Qin X-S, Ge W, Ma H-G, Sun L-L, Hou Z-M, Chen H, Chen P, Qin G-Q, Shen W, Zhang X-F (2014) Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes. Mol Biol Rep 41(3):1227–1235. https://doi.org/10.1007/s11033-013-2967-7

    Article  CAS  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas Iii EJ, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, deJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin C-W, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli K-P, Parker HG, Pollinger JP, Searle SMJ, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger J-P, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nguyen T, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O'Neill B, O'Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander ES (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803. https://doi.org/10.1038/nature04338

    Article  CAS  Google Scholar 

  • Ljungman M, Hanawalt PC (1992) Efficient protection against oxidative DNA damage in chromatin. Mol Carcinog 5(4):264–269. https://doi.org/10.1002/mc.2940050406

    Article  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  Google Scholar 

  • McEachern KL (2014) Toxicity of oil from BP Deepwater Horizon blowout on the early life stage of red drum, Sciaenops ocellatus. Faculty of the College of Arts and Sciences, Florida Gulf Coast University

    Google Scholar 

  • Metzger JM, Westfall MV (2004) Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation. Circ Res 94(2):146–158

    Article  CAS  Google Scholar 

  • Meyer JN, Di Giulio RT (2003) Heritable adaptation and fitness costs in killifish (Fundulus heteroclitus) inhabiting a polluted estuary. Ecol Appl 13(2):490–503. https://doi.org/10.1890/1051-0761(2003)013[0490:HAAFCI]2.0.CO;2

    Article  Google Scholar 

  • Murawski SA, Hogarth WT, Peebles EB, Barbeiri L (2014) Prevalence of external skin lesions and polycyclic aromatic hydrocarbon concentrations in Gulf of Mexico fishes, post-Deepwater Horizon. Trans Am Fish Soc 143(4):1084–1097. https://doi.org/10.1080/00028487.2014.911205

    Article  CAS  Google Scholar 

  • Magnuson JT, Khursigara AJ, Allmon EB, Esbaugh AJ, Roberts AP (2018). Effects of Deepwater Horizon crude oil on ocular development in two estuarine fish species, red drum (Sciaenops ocellatus) and sheepshead minnow (Cyprinodon variegatus). Ecotoxicol Environ Saf 166:186–191

    Article  CAS  Google Scholar 

  • Nacci D, Proestou D, Champlin D, Martinson J, Waits ER (2016) Genetic basis for rapidly evolved tolerance in the wild: adaptation to toxic pollutants by an estuarine fish species. Mol Ecol 25(21):5467–5482. https://doi.org/10.1111/mec.13848

    Article  CAS  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29(1):1–10. https://doi.org/10.2307/2407137

    Article  Google Scholar 

  • Nilsen BM, Berg K, GoksoØr A (1998) Induction of cytochrome P4501A (CYP1A) in fish: a biomarker for environmental pollution. In: Phillips IR, Shephard EA (eds) Cytochrome P450 protocols. Humana Press, Totowa, NJ, pp 423–438. https://doi.org/10.1385/0-89603-519-0:423

    Chapter  Google Scholar 

  • O’Leary SJ, Hollenbeck CM, Vega RR, Gold JR, Portnoy DS (2018) Genetic mapping and comparative genomics to inform restoration enhancement and culture of southern flounder, Paralichthys lethostigma. BMC Genomics 19(1):163. https://doi.org/10.1186/s12864-018-4541-0

    Article  CAS  Google Scholar 

  • Oleksiak MF, Karchner SI, Jenny MJ, Franks DG, Welch DBM, Hahn ME (2011) Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR) agonist in embryos of Atlantic killifish (Fundulus heteroclitus) from a marine Superfund site. BMC Genomics 12(1):263

    Article  CAS  Google Scholar 

  • Oppold A-M, Müller R (2017) Chapter nine - Epigenetics: a hidden target of insecticides. In: Verlinden H (ed) Advances in insect physiology, vol 53. Academic Press, pp 313–324. https://doi.org/10.1016/bs.aiip.2017.04.002

    Google Scholar 

  • Oziolor EM, Bigorgne E, Aguilar L, Usenko S, Matson CW (2014) Evolved resistance to PCB- and PAH-induced cardiac teratogenesis, and reduced CYP1A activity in Gulf killifish (Fundulus grandis) populations from the Houston Ship Channel, Texas. Aquat Toxicol 150:210–219. https://doi.org/10.1016/j.aquatox.2014.03.012

    Article  CAS  Google Scholar 

  • Palumbi SR (2001) Humans as the World's greatest evolutionary force. Science 293(5536):1786–1790. https://doi.org/10.1126/science.293.5536.1786

    Article  CAS  Google Scholar 

  • Pashin YV, Bakhitova LM (1979) Mutagenic and carcinogenic properties of polycyclic aromatic hydrocarbons. Environ Health Perspect 30:185–189

    Article  CAS  Google Scholar 

  • Patro R, Duggal G, Kingsford C (2015) Salmon: accurate, versatile and ultrafast quantification from RNA-seq data using lightweight-alignment. Biorxiv:021592

    Google Scholar 

  • Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9(1):3–12. https://doi.org/10.4161/epi.27473

    Article  CAS  Google Scholar 

  • Pilcher W, Miles S, Tang S, Mayer G, Whitehead A (2014) Genomic and genotoxic responses to controlled weathered-oil exposures confirm and extend field studies on impacts of the jizon oil spill on native killifish. PLoS One 9(9):e106351

    Article  Google Scholar 

  • Potok ME, Nix DA, Parnell TJ, Cairns BR (2013) Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153(4):759–772. https://doi.org/10.1016/j.cell.2013.04.030

    Article  CAS  Google Scholar 

  • Puritz JB, Toonen RJ (2011) Coastal pollution limits pelagic larval dispersal. Nat Commun 2:226. https://doi.org/10.1038/ncomms1238

    Article  CAS  Google Scholar 

  • Reid NM, Proestou DA, Clark BW, Warren WC, Colbourne JK, Shaw JR, Karchner SI, Hahn ME, Nacci D, Oleksiak MF, Crawford DL, Whitehead A (2016) The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354(6317):1305–1308. https://doi.org/10.1126/science.aah4993

    Article  CAS  Google Scholar 

  • Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425. https://doi.org/10.1038/nature05918

    Article  CAS  Google Scholar 

  • Robertson M, Schrey A, Shayter A, Moss CJ, Richards C (2017) Genetic and epigenetic variation in Spartina alterniflora following the Deepwater Horizon oil spill. Evol Appl 10(8):792–801. https://doi.org/10.1111/eva.12482

    Article  CAS  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  CAS  Google Scholar 

  • Schlenk D, Handy R, Steinert S, Depledge MH, Benson W (2008a) Biotransformation in fishes. In: Di Giulio R, Hinton D (eds) The toxicology of fishes, vol 1. CRC Press, Boca Raton, FL, pp 153–234

    Chapter  Google Scholar 

  • Schlenk D, Handy R, Steinert S, Depledge MH, Benson W (2008b) Biomarkers. In: Di Giulio R, Hinton D (eds) The toxicology of fishes, vol 1. CRC Press, Boca Raton, FL, pp 683–732

    Chapter  Google Scholar 

  • Schiebelhut LM, Puritz JB, Dawson MN (2018) Decimation by sea star wasting disease and rapid genetic change in a keystone species, Pisaster ochraceus. Proc Nat Acad Sci 115:7069. https://doi.org/10.1073/pnas.1800285115

    Article  CAS  Google Scholar 

  • Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 21(4):257–276. https://doi.org/10.2133/dmpk.21.257

    Article  CAS  Google Scholar 

  • Skinner MK (2014) Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol 398(1):4–12. https://doi.org/10.1016/j.mce.2014.07.019

    Article  CAS  Google Scholar 

  • Sørhus E, Incardona JP, Furmanek T, Goetz GW, Scholz NL, Meier S, Edvardsen RB, Jentoft S (2017) Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. elife 6:e20707

    Article  Google Scholar 

  • Stieglitz JD, Mager EM, Hoenig RH, Benetti DD, Grosell M (2016) Impacts of Deepwater Horizon crude oil exposure on adult mahi-mahi (Coryphaena hippurus) swim performance. Environ Toxicol Chem 35(10):2613–2622. https://doi.org/10.1002/etc.3436

    Article  CAS  Google Scholar 

  • Szyf M (2015) Nongenetic inheritance and transgenerational epigenetics. Trends Mol Med 21(2):134–144. https://doi.org/10.1016/j.molmed.2014.12.004

    Article  Google Scholar 

  • Shiizaki K, Kawanishi M, Yagi T (2017) Modulation of benzo[a]pyrene-DNA adduct formation by CYP1 inducer and inhibitor. Genes Environ 39:14. https://doi.org/10.1186s41021-017-0076-x

  • Takata H, Hanafusa T, Mori T, Shimura M, Iida Y, Ishikawa K, Yoshikawa K, Yoshikawa Y, Maeshima K (2013) Chromatin compaction protects genomic DNA from radiation damage. PLoS One 8(10):e75622. https://doi.org/10.1371/journal.pone.0075622

    Article  CAS  Google Scholar 

  • Tang WW, Dietmann S, Irie N, Leitch Harry G, Floros Vasileios I, Bradshaw Charles R, Hackett JA, Chinnery PF, Surani MA (2015) A unique gene regulatory network resets the human germline epigenome for development. Cell 161(6):1453–1467. https://doi.org/10.1016/j.cell.2015.04.053

    Article  CAS  Google Scholar 

  • van Straalen NM, Timmermans MJTN (2002) Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Hum Ecol Risk Assess Int J 8(5):983–1002. https://doi.org/10.1080/1080-700291905783

    Article  Google Scholar 

  • Volkova PY, Geras'kin SA, Horemans N, Makarenko ES, Saenen E, Duarte GT, Nauts R, Bondarenko VS, Jacobs G, Voorspoels S, Kudin M (2018) Chronic radiation exposure as an ecological factor: hypermethylation and genetic differentiation in irradiated Scots pine populations. Environ Pollut 232:105–112. https://doi.org/10.1016/j.envpol.2017.08.123

    Article  CAS  Google Scholar 

  • Whalon ME, Mota-Sanchez D, Hollingworth RM (2008) Global pesticide resistance in arthropods. CABI, Wallingford, Oxfordshire

    Book  Google Scholar 

  • Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D (2017) When evolution is the solution to pollution: key principles, and lessons from rapid repeated adaptation of killifish (Fundulus heteroclitus) populations. Evol Appl 10(8):762–783. https://doi.org/10.1111/eva.12470

    Article  Google Scholar 

  • Whitehead A, Dubansky B, Bodinier C, Garcia TI, Miles S, Pilley C, Raghunathan V, Roach JL, Walker N, Walter RB (2012a) Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proc Natl Acad Sci 109(50):20298–20302

    Article  CAS  Google Scholar 

  • Whitehead A, Dubansky B, Bodinier C, Garcia TI, Miles S, Pilley C, Raghunathan V, Roach JL, Walker N, Walter RB, Rice CD, Galvez F (2012b) Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proc Natl Acad Sci 109(50):20298–20302. https://doi.org/10.1073/pnas.1109545108

    Article  Google Scholar 

  • Whitehead A, Pilcher W, Champlin D, Nacci D (2011) Common mechanism underlies repeated evolution of extreme pollution tolerance. Proceedings of the Royal Society of London B: Biological Sciences:rspb20110847

    Google Scholar 

  • Whitehead A, Triant D, Champlin D, Nacci D (2010) Comparative transcriptomics implicates mechanisms of evolved pollution tolerance in a killifish population. Mol Ecol 19(23):5186–5203

    Article  CAS  Google Scholar 

  • Wills LP, Zhu S, Willett KL, Di Giulio RT (2009) Effect of CYP1A inhibition on the biotransformation of benzo[a]pyrene in two populations of Fundulus heteroclitus with different exposure histories. Aquat Toxicol 92(3):195–201

    Article  CAS  Google Scholar 

  • Wirgin I, Roy NK, Loftus M, Chambers RC, Franks DG, Hahn ME (2011) Mechanistic basis of resistance to PCBs in Atlantic tomcod from the Hudson River. Science 331(6022):1322–1325. https://doi.org/10.1126/science.1197296

    Article  CAS  Google Scholar 

  • Wirgin I, Waldman JR (1998) Altered gene expression and genetic damage in North American fish populations. Mutat Res 399(2):193–219. https://doi.org/10.1016/S0027-5107(97)00256-X

    Article  CAS  Google Scholar 

  • Wirgin I, Waldman JR (2004) Resistance to contaminants in North American fish populations. Mutat Res 552(1):73–100

    Article  CAS  Google Scholar 

  • Xu EG, Khursigara AJ, Magnuson J, Hazard ES, Hardiman G, Esbaugh AJ, Roberts AP, Schlenk D (2017) Larval red drum (Sciaenops ocellatus) sublethal exposure to weathered Deepwater Horizon crude oil: developmental and transcriptomic consequences. Environ Sci Technol 51(17):10162–10172

    Article  CAS  Google Scholar 

  • Xu EG, Mager EM, Grosell M, Pasparakis C, Schlenker LS, Stieglitz JD, Benetti D, Hazard ES, Courtney SM, Diamante G (2016a) Time-and oil-dependent transcriptomic and physiological responses to Deepwater Horizon oil in mahi-mahi (Coryphaena hippurus) embryos and larvae. Environ Sci Technol 50(14):7842–7851

    Article  CAS  Google Scholar 

  • Xu X, Weber D, Martin A, Lone D (2016b) Trans-generational transmission of neurobehavioral impairments produced by developmental methylmercury exposure in zebrafish (Danio rerio). Neurotoxicol Teratol 53:19–23. https://doi.org/10.1016/j.ntt.2015.11.003

    Article  CAS  Google Scholar 

  • Xu EG, Magnuson JT, Diamante G, Mager E, Pasparakis C, Grosell M, Roberts AP, Schlenk D (2018) Changes in microRNA-mRNA signatures agree with morphological, physiological, and behavioral changes in larval mahi-mahi treated with Deepwater Horizon oil. Environ Sci Technol 52:13501–13510

    Article  CAS  Google Scholar 

  • Xu EG, Khursigara AJ, Li S, Esbaugh AJ, Dasgupta S, Volz DC, Schlenk D (2019) mRNA-miRNA-Seqreveals neuro-cardio mechanisms of crude oil toxicity in red drum (Sciaenops ocellatus). Environ Sci Technol. https://doi.org/10.1021/acs.est.9b00150

    Article  CAS  Google Scholar 

  • Zhu L, Qu K, Xia B, Sun X, Chen B (2016) Transcriptomic response to water accommodated fraction of crude oil exposure in the gill of Japanese flounder, Paralichthys olivaceus. Mar Pollut Bull 106(1–2):283–291

    Article  CAS  Google Scholar 

Download references

Funding

This research was made possible by grants from the Gulf of Mexico Research Initiative through its consortia: The Center for the Integrated Modeling and Analysis of the Gulf Ecosystem (C-IMAGE) and Relationships of Effects of Cardiac Outcomes in fish for Validation of Ecological Risk (RECOVER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Portnoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Portnoy, D.S., Fields, A.T., Greer, J.B., Schlenk, D. (2020). Genetics and Oil: Transcriptomics, Epigenetics, and Population Genomics as Tools to Understand Animal Responses to Exposure Across Different Time Scales. In: Murawski, S., et al. Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_30

Download citation

Publish with us

Policies and ethics