Advertisement

Long-Term Preservation of Oil Spill Events in Sediments: The Case for the Deepwater Horizon Oil Spill in the Northern Gulf of Mexico

  • Isabel C. RomeroEmail author
  • Jeffrey P. Chanton
  • Brad E. Roseheim
  • Jagoš R. Radović
  • Patrick T. Schwing
  • David J. Hollander
  • Stephen R. Larter
  • Thomas B. P. Oldenburg
Chapter

Abstract

Geochemical studies can provide a record of environmental changes and biogeochemical processes in sedimentary systems. Analytical methods are in need of high-throughput procedures targeting recalcitrant and multiple chemical species for delineating ecological patterns and ecosystem health. The goal of this chapter is to summarize the analytical methods, recalcitrant molecules and transformed organic material used in previous studies as chemical indicators of the impact and fate of Deepwater Horizon (DWH) oil residues in sediments. Further monitoring of recalcitrant molecules and transformed material will help to elucidate the long-term fate of the DWH weathered oil in sedimentary environments of the Gulf of Mexico (GoM).

Keywords

Deep-sea sediments GC/MS/MS-MRM Ramped pyrolysis Stable isotopes FTICR-MS 

Notes

Funding Information

This research was made possible by grants from The Gulf of Mexico Research Initiative through its consortia: The Center for the Integrated Modeling and Analysis of the Gulf Ecosystem (C-IMAGE), Ecosystem Impacts of Oil and Gas Inputs to the Gulf (ECOGIG), and Deep Sea to Coast Connectivity in the Eastern Gulf of Mexico (Deep-C).

References

  1. Adhikari PL, Maiti K, Overton EB, Rosenheim BE, Marx BD (2016) Distributions and accumulation rates of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico sediments. Environ Pollut 212:413–423.  https://doi.org/10.1016/j.envpol.2016.01.064CrossRefGoogle Scholar
  2. Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM, Redmond MC, Valentine DL, Reddy CM, Graham M, Redmond MC, Valentine DL, Reddy CM (2012) Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ Sci Technol 46:8799–8807.  https://doi.org/10.1021/es3015138CrossRefGoogle Scholar
  3. Aeppli C, Nelson RK, Radović JR, Carmichael CA, Valentine DL, Reddy CM (2014) Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil. Environ Sci Technol 48:6726–6734.  https://doi.org/10.1021/es500825qCrossRefGoogle Scholar
  4. Aeppli C, Swarthout RF, O’Neil GW, Katz SD, Nabi D, Ward CP, Nelson RK, Sharpless CM, Reddy CM (2018) How persistent and bioavailable are oxygenated Deepwater Horizon oil transformation products? Environ Sci Technol 52:7250–7258.  https://doi.org/10.1021/acs.est.8b01001CrossRefGoogle Scholar
  5. Bagby SC, Reddy CM, Aeppli C, Fisher GB, Valentine DL (2016) Persistence and biodegradation of oil at the ocean floor following Deepwater Horizon. Proc Natl Acad Sci. 201610110.  https://doi.org/10.1073/pnas.1610110114CrossRefGoogle Scholar
  6. Brooks GR, Larson RA, Schwing PT, Romero I, Moore C, Reichart G-J, Jilbert T, Chanton JP, Hastings DW, Overholt WA, Marks KP, Kostka JE, Holmes CW, Hollander D (2015) Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout. PLoS One 10.  https://doi.org/10.1371/journal.pone.0132341CrossRefGoogle Scholar
  7. Chanton JP, Cherrier J, Wilson RM, Sarkodee-Adoo J, Bosman S, Mickle A, Graham WM (2012) Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of Mexico. Environ Res Lett 7:045303.  https://doi.org/10.1088/1748-9326/7/4/045303CrossRefGoogle Scholar
  8. Chanton J, Zhao T, Rosenheim BE, Joye S, Bosman S, Brunner C, Yeager KM, Diercks AR, Hollander D (2015) Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the Deepwater Horizon oil spill. Environ Sci Technol 49:847–854.  https://doi.org/10.1021/es5046524CrossRefGoogle Scholar
  9. Chanton JP, Giering SLC, Bosman SH, Rogers KL, Sweet J, Asper VL, Diercks AR, Passow U (2018) Isotopic composition of sinking particles: oil effects, recovery and baselines in the Gulf of Mexico, 2010–2015. Elementa Sci Anthropocene 6:43.  https://doi.org/10.1525/elementa.298CrossRefGoogle Scholar
  10. Daly KL, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene:1–16.  https://doi.org/10.1016/j.ancene.2016.01.006CrossRefGoogle Scholar
  11. Damsté JSS, Schouten S, Hopmans EC, van Duin ACT, Geenevasen JAJ (2002) Crenarchaeol. J Lipid Res 43:1641–1651.  https://doi.org/10.1194/jlr.M200148-JLR200CrossRefGoogle Scholar
  12. Diercks A, Dike C, Asper VL, Dimarco SF, Jeffrey P (2018) Scales of seafloor sediment resuspension in the northern Gulf of Mexico. Elementa Sci Anthropocene 1:1–28.  https://doi.org/10.1525/elementa.285CrossRefGoogle Scholar
  13. Graven HD (2015) Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proc Natl Acad Sci 112:9542–9545.  https://doi.org/10.1073/pnas.1504467112CrossRefGoogle Scholar
  14. Graven HD, Guilderson TP, Keeling RF (2012) Observations of radiocarbon in CO2 at la Jolla, California, USA 1992-2007: analysis of the long-term trend. J Geophys Res Atmos 117:1–14.  https://doi.org/10.1029/2011JD016533CrossRefGoogle Scholar
  15. Gros J, Reddy CM, Aeppli C, Nelson RK, Carmichael C, Arey JS (2014) Resolving biodegradation patterns of persistent saturated hydrocarbons in weathered oil samples from the Deepwater Horizon disaster. Environ Sci Technol 48:1628–1637.  https://doi.org/10.1021/es4042836CrossRefGoogle Scholar
  16. Hall GJ, Frysinger GS, Aeppli C, Carmichael CA, Gros J, Lemkau KL, Nelson RK, Reddy CM (2013) Oxygenated weathering products of Deepwater Horizon oil come from surprising precursors. Mar Pollut Bull 75:140–149.  https://doi.org/10.1016/j.marpolbul.2013.07.048CrossRefGoogle Scholar
  17. Hastings DW, Schwing PT, Brooks GR, Larson RA, Morford JL, Roeder T, Quinn KA, Bartlett T, Romero IC, Hollander DJ (2016) Changes in sediment redox conditions following the BP DWH blowout event. Deep-Sea Res II Top Stud Oceanogr 129:167–178.  https://doi.org/10.1016/j.dsr2.2014.12.009CrossRefGoogle Scholar
  18. Hayworth JS, Prabakhar Clement T, John GF, Yin F (2015) Fate of Deepwater Horizon oil in Alabama’s beach system: understanding physical evolution processes based on observational data. Mar Pollut Bull 90:95–105.  https://doi.org/10.1016/j.marpolbul.2014.11.016CrossRefGoogle Scholar
  19. Hill TM, Kennett JP, Valentine DL (2004) Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochim Cosmochim Acta 68:4619–4627.  https://doi.org/10.1016/j.gca.2004.07.012CrossRefGoogle Scholar
  20. Hopmans EC, Weijers JWH, Schefuß E, Herfort L, Sinninghe Damsté JS, Schouten S (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett 224:107–116.  https://doi.org/10.1016/j.epsl.2004.05.012CrossRefGoogle Scholar
  21. Lewan MD, Warden A, Dias RF, Lowry ZK, Hannah TL, Lillis PG, Kokaly RF, Hoefen TM, Swayze GA, Mills CT, Harris SH, Plumlee GS (2014) Asphaltene content and composition as a measure of Deepwater Horizon oil spill losses within the first 80 days. Org Geochem 75:54–60.  https://doi.org/10.1016/j.orggeochem.2014.06.004CrossRefGoogle Scholar
  22. Louvado A, Gomes NCM, Simões MMQ, Almeida A, Cleary DFR, Cunha A (2015) Polycyclic aromatic hydrocarbons in deep sea sediments : microbe – pollutant interactions in a remote environment. Sci Total Environ 526:312–328.  https://doi.org/10.1016/j.scitotenv.2015.04.048CrossRefGoogle Scholar
  23. McNichol AP, Aluwihare LI (2007) The power of radiocarbon in biogeochemical studies of the marine carbon cycle: insights from studies of dissolved and particulate organic carbon (DOC and POC). Chem Rev 107:443–466.  https://doi.org/10.1021/cr050374gCrossRefGoogle Scholar
  24. Nomaki H, Heinz P, Nakatsuka T, Shimanaga M, Ohkouchi N, Ogawa NO, Kogure K, Ikemoto E, Kitazato H (2006) Different ingestion patterns of 13C-labeled bacteria and algae by deep-sea benthic foraminifera. Mar Ecol Prog Ser 310:95–108.  https://doi.org/10.3354/meps310095CrossRefGoogle Scholar
  25. Passow U, Ziervogel K, Asper V, Diercks A (2012) Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7:035301.  https://doi.org/10.1088/1748-9326/7/3/035301CrossRefGoogle Scholar
  26. Pearson A, Ingalls AE (2013) Assessing the use of archaeal lipids as marine environmental proxies. Annu Rev Earth Planet Sci 41:359–384CrossRefGoogle Scholar
  27. Pendergraft MA, Rosenheim BE (2014) Varying relative degradation rates of oil in different forms and environments revealed by ramped pyrolysis. Environ Sci Technol 48:10966–10974.  https://doi.org/10.1021/es501354cCrossRefGoogle Scholar
  28. Pendergraft MA, Dincer Z, Sericano JL, Wade TL, Kolasinski J, Rosenheim BE (2013) Linking ramped pyrolysis isotope data to oil content through PAH analysis. Environ Res Lett 8(4):1–11.  https://doi.org/10.1088/1748-9326/8/4/044038CrossRefGoogle Scholar
  29. Radović JR, Silva RC, Snowdon R, Larter SR, Oldenburg TBP (2016a) Rapid screening of glycerol ether lipid biomarkers in recent marine sediment using atmospheric pressure photoionization in positive mode fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 88:1128–1137.  https://doi.org/10.1021/acs.analchem.5b02571CrossRefGoogle Scholar
  30. Radović JR, Silva RC, Snowdon RW, Brown M, Larter S, Oldenburg TBP (2016b) A rapid method to assess a broad inventory of organic species in marine sediments using ultra-high resolution mass spectrometry. Rapid Commun Mass Spectrom 30:1273–1282.  https://doi.org/10.1002/rcm.7556CrossRefGoogle Scholar
  31. Romero IC, Schwing PT, Brooks GR, Larson RA, Hastings DW, Flower BP, Goddard EA, Hollander DJ (2015) Hydrocarbons in deep-sea sediments following the 2010 Deepwater Horizon Blowout in the Northeast Gulf of Mexico. PLoS One 10:1–23.  https://doi.org/10.1371/journal.pone.0128371CrossRefGoogle Scholar
  32. Romero IC, Toro-Farmer G, Diercks A, Schwing P, Muller-Karger F, Murawski S, Hollander DJ (2017) Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ Pollut 228:179–189.  https://doi.org/10.1016/j.envpol.2017.05.019CrossRefGoogle Scholar
  33. Rosenheim BE, Day MB, Domack E, Schrum H, Benthien A, Hayes JM (2008) Antarctic sediment chronology by programmed-temperature pyrolysis: methodology and data treatment. Geochem Geophys Geosyst 9:1–16.  https://doi.org/10.1029/2007GC001816CrossRefGoogle Scholar
  34. Rosenheim BE, Pendergraft MA, Flowers GC, Carney R, Sericano JL, Amer RM, Chanton J, Dincer Z, Wade TL (2014) Employing extant stable carbon isotope data in Gulf of Mexico sedimentary organic matter for oil spill studies. Deep-Sea Res II Top Stud Oceanogr Elsevier:1–10.  https://doi.org/10.1016/j.dsr2.2014.03.020CrossRefGoogle Scholar
  35. Rosenheim BE, Pendergraft MA, Flowers GC, Carney R, Sericano JL, Amer RM, Chanton J, Dincer Z, Wade TL (2016) Employing extant stable carbon isotope data in Gulf of Mexico sedimentary organic matter for oil spill studies. Deep-Sea Res II Top Stud Oceanogr 129:249–258.  https://doi.org/10.1016/j.dsr2.2014.03.020CrossRefGoogle Scholar
  36. Ruddy BM, Huettel M, Kostka JE, Lobodin VV, Bythell BJ, McKenna AM, Aeppli C, Reddy CM, Nelson RK, Marshall AG, Rodgers RP (2014) Targeted petroleomics: analytical investigation of Macondo well oil oxidation products from Pensacola Beach. Energy Fuel 28:4043–4050.  https://doi.org/10.1021/ef500427nCrossRefGoogle Scholar
  37. Ryerson TB, Camilli R, Kessler JD, Kujawinski EB, Reddy CM, Valentine DL, Atlas E, Blake DR, de Gouw J, Meinardi S, Parrish DD, Peischl J, Seewald JS, Warneke C (2012) Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution. Proc Natl Acad Sci U S A 109:20246–20253.  https://doi.org/10.1073/pnas.1110564109CrossRefGoogle Scholar
  38. Schouten S, Hopmans EC, Rosell-Melé A, Pearson A, Adam P, Bauersachs T, Bard E, Bernasconi SM, Bianchi TS, Brocks JJ, Carlson LT, Castañeda IS, Derenne S, Selver AD, Dutta K, Eglinton T, Fosse C, Galy V, Grice K, Hinrichs KU, Huang Y, Huguet A, Huguet C, Hurley S, Ingalls A, Jia G, Keely B, Knappy C, Kondo M, Krishnan S, Lincoln S, Lipp J, Mangelsdorf K, Martínez-García A, Ménot G, Mets A, Mollenhauer G, Ohkouchi N, Ossebaar J, Pagani M, Pancost RD, Pearson EJ, Peterse F, Reichart GJ, Schaeffer P, Schmitt G, Schwark L, Shah SR, Smith RW, Smittenberg RH, Summons RE, Takano Y, Talbot HM, Taylor KWR, Tarozo R, Uchida M, Van Dongen BE, Van Mooy BAS, Wang J, Warren C, Weijers JWH, Werne JP, Woltering M, Xie S, Yamamoto M, Yang H, Zhang CL, Zhang Y, Zhao M, Damsté JSS (2013a) An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures. Geochem Geophys Geosyst 14:5263–5285.  https://doi.org/10.1002/2013GC004904CrossRefGoogle Scholar
  39. Schouten S, Hopmans EC, Schefuß E, Damsté JSS (2002) Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274CrossRefGoogle Scholar
  40. Schouten S, Hopmans EC, Sinninghe Damsté JS (2013b) The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem 54:19–61.  https://doi.org/10.1016/j.orggeochem.2012.09.006CrossRefGoogle Scholar
  41. Schwing PT, Romero IC, Brooks GR, Hastings DW, Larson RA, Hollander DJ (2015) A decline in benthic foraminifera following the Deepwater Horizon event in the Northeastern Gulf of Mexico. PLoS One 10:1–22.  https://doi.org/10.7266/N79021PB.FundingCrossRefGoogle Scholar
  42. Schwing PT, O’Malley BJ, Romero IC, Martínez-Colón M, Hastings DW, Glabach MA, Hladky EM, Greco A, Hollander DJ (2017) Characterizing the variability of benthic foraminifera in the northeastern Gulf of Mexico following the Deepwater Horizon event (2010–2012). Environ Sci Pollut Res 24.  https://doi.org/10.1007/s11356-016-7996-zCrossRefGoogle Scholar
  43. Schwing PT, Chanton JP, Romero IC, Hollander DJ, Goddard EA, Brooks GR, Larson RA (2018) Tracing the incorporation of carbon into benthic foraminiferal calcite following the Deepwater Horizon event. Environ Pollut 237:424–429.  https://doi.org/10.1016/j.envpol.2018.02.066CrossRefGoogle Scholar
  44. Sen Gupta BK (1999) Modern Foraminifera. Kluwer Academic Publishers, Dordrecht. Chicago (Author-Date, 15th ed). 385pGoogle Scholar
  45. Smith RW, Bianchi TS, Li X (2012) A re-evaluation of the use of branched GDGTs as terrestrial biomarkers: implications for the BIT Index. Geochim Cosmochim Acta 80:14–29.  https://doi.org/10.1016/j.gca.2011.11.025CrossRefGoogle Scholar
  46. Stout SA, Payne JR (2016) Macondo oil in deep-sea sediments: part 1 – sub-sea weathering of oil deposited on the seafloor. Mar Pollut Bull 111(1–2):365–380.  https://doi.org/10.1016/j.marpolbul.2016.07.036CrossRefGoogle Scholar
  47. Stout SA, Rouhani S, Liu B, Oehrig J, Ricker RW, Baker G, Lewis C (2016) Assessing the footprint and volume of oil deposited in deep-sea sediments following the Deepwater Horizon oil spill. Mar Pollut Bull 114:327–342.  https://doi.org/10.1016/j.marpolbul.2016.09.046CrossRefGoogle Scholar
  48. Stuiver M, Pollach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363CrossRefGoogle Scholar
  49. Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs KU (2004) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry - New biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18:617–628.  https://doi.org/10.1002/rcm.1378CrossRefGoogle Scholar
  50. Theodor M, Schmiedl G, Mackensen A (2016) Stable isotope composition of deep-sea benthic foraminifera under contrasting trophic conditions in the western Mediterranean Sea. Mar Micropaleontol 124:16–28.  https://doi.org/10.1016/j.marmicro.2016.02.001CrossRefGoogle Scholar
  51. Tierney JE (2012) GDGT Thermometry: lipid tools for reconstructing paleotemperatures. Paleontol Soc Papers 18:115–131.  https://doi.org/10.1017/s1089332600002588CrossRefGoogle Scholar
  52. Torres ME, Mix AC, Kinports K, Haley B, Klinkhammer GP, McManus J, de Angelis MA (2003) Is methane venting at the seafloor recorded by δ 13 C of benthic foraminifera shells? Paleoceanography 18.  https://doi.org/10.1029/2002PA000824CrossRefGoogle Scholar
  53. Turner RE, Overton EB, Meyer BM, Miles MS, Hooper-Bui L (2014) Changes in the concentration and relative abundance of alkanes and PAHs from the Deepwater Horizon oiling of coastal marshes. Mar Pollut Bull 86:291–297.  https://doi.org/10.1016/j.marpolbul.2014.07.003CrossRefGoogle Scholar
  54. Valentine DL, Fisher GB, Bagby SC, Nelson RK, Reddy CM, Sylva SP, Woo M (2014) Fallout plume of submerged oil from Deepwater Horizon. Proc Natl Acad Sci 111(45):15906–15911.  https://doi.org/10.1073/pnas.1414873111CrossRefGoogle Scholar
  55. Wang Z, Stout S, Fingas M (2006) Forensic fingerprinting of biomarkers for oil spill characterization and source identification. Environ Forensic 7:105–146.  https://doi.org/10.1080/15275920600667104CrossRefGoogle Scholar
  56. Wang Z, Yang C, Yang Z, Brown CE, Hollebone BP, Stout SA (2016) Petroleum biomarker fingerprinting for oil spill characterization and source identification BT. In: Standard handbook oil spill environmental forensics, 2nd edn. Elsevier Inc, pp 131–254Google Scholar
  57. White HK, Wang CH, Williams PL, Findley DM, Thurston AM, Simister RL, Aeppli C, Nelson RK, Reddy CM (2016) Long-term weathering and continued oxidation of oil residues from the Deepwater Horizon spill. Mar Pollut Bull 113:380–386.  https://doi.org/10.1016/j.marpolbul.2016.10.029CrossRefGoogle Scholar
  58. Wilson RM, Cherrier J, Sarkodee-Adoo J, Bosman S, Mickle A, Chanton JP (2016) Tracing the intrusion of fossil carbon into coastal Louisiana macrofauna using natural 14C and 13C abundances. Deep-Sea Res II Top Stud Oceanogr 129:89–95.  https://doi.org/10.1016/j.dsr2.2015.05.014CrossRefGoogle Scholar
  59. Yan B, Passow U, Chanton JP, Nöthig E-M, Asper V, Sweet J, Pitiranggon M, Diercks A, Pak D (2016) Sustained deposition of contaminants from the Deepwater Horizon spill. Proc Natl Acad Sci 113:E3332–E3340.  https://doi.org/10.1073/pnas.1513156113CrossRefGoogle Scholar
  60. Yin F, John GF, Hayworth JS, Clement TP (2015) Long-term monitoring data to describe the fate of polycyclic aromatic hydrocarbons in Deepwater Horizon oil submerged off Alabama’s beaches. Sci Total Environ 508:46–56.  https://doi.org/10.1016/j.scitotenv.2014.10.105CrossRefGoogle Scholar
  61. Zarriess M, MacKensen A (2011) Testing the impact of seasonal phytodetritus deposition on 13C of epibenthic foraminifer Cibicidoides wuellerstorfi: a 31,000 year high-resolution record from the northwest African continental slope. Paleoceanography 26(2):1–8.  https://doi.org/10.1029/2010PA001944CrossRefGoogle Scholar
  62. Zhu C, Lipp JS, Wörmer L, Becker KW, Schröder J, Hinrichs KU (2013) Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography-mass spectrometry protocol. Org Geochem 65:53–62.  https://doi.org/10.1016/j.orggeochem.2013.09.012CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Isabel C. Romero
    • 1
    Email author
  • Jeffrey P. Chanton
    • 2
  • Brad E. Roseheim
    • 1
  • Jagoš R. Radović
    • 3
  • Patrick T. Schwing
    • 1
  • David J. Hollander
    • 1
  • Stephen R. Larter
    • 3
  • Thomas B. P. Oldenburg
    • 3
  1. 1.University of South Florida, College of Marine ScienceSt. PetersburgUSA
  2. 2.Department of Earth, Ocean and Atmospheric ScienceFlorida State UniversityTallahasseeUSA
  3. 3.Department of GeoscienceUniversity of Calgary, PRGCalgaryCanada

Personalised recommendations