Advertisement

Thermogravimetric Analysis (TGA)

  • Cataldo De BlasioEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The detailed description of thermogravimetric analysis (TGA) is given here. This type of analysis gives much information on the biomass at hand and its utilization in conversion processes. The most important TGA configurations are shown here with the most common procedure of analysis. For instance, positive or negative variation of mass, thermal and thermochemical processes, and the difference between TGA and derivative thermogravimetry DTG are illustrated. In this section, the combination of TGA with differential scanning calorimetry (DSC) or differential thermal analysis (DTA) is taken into account in order to carry out a complete analysis of the thermal behavior of materials with one equipment. This section has been written in collaboration with Mauro Prestipino and Prof. Antonio Galvagno, Postdoc Researcher at the Faculty of Engineering at the University of Messina in Italy, who has provided also the photographs shown in this chapter.

References

  1. Auroux, A. (Ed.). (2013). Calorimetry and thermal methods in catalysis. Berlin, Heidelberg: Springer. Retrieved from www.springer.com/gp/book/9783642119538.
  2. Basu, P. (2013). Biomass gasification, pyrolysis and torrefaction—Practical design and theory (2nd ed.). Oxford, UK: Academic Press. Retrieved from  https://doi.org/10.1016/c2011-0-07564-6.
  3. Cai, J., Xu, D., Dong, Z., Yu, X., Yang, Y., Banks, S. W., et al. (2018). Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable and Sustainable Energy Reviews, 82, 2705–2715.  https://doi.org/10.1016/j.rser.2017.09.113.CrossRefGoogle Scholar
  4. Chong, C. T., Mong, G. R., Ng, J. -H., Chong, W. W. F., Ani, F. N., Lam, S. S., et al. (2019). Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Conversion and Management, 180, 1260–1267.  https://doi.org/10.1016/j.enconman.2018.11.071.CrossRefGoogle Scholar
  5. Di Blasi, C. (2009). Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science, 35(2), 121–140.  https://doi.org/10.1016/j.pecs.2008.08.001.CrossRefGoogle Scholar
  6. Dupont, C., Nocquet, T., Da Costa, J. A., & Verne-Tournon, C. (2011). Kinetic modelling of steam gasification of various woody biomass chars: Influence of inorganic elements. Bioresource Technology, 102(20), 9743–9748.  https://doi.org/10.1016/j.biortech.2011.07.016.CrossRefGoogle Scholar
  7. Gallagher, P. K. (1998). Thermogravimetry and thermomagnetometry, Chap. 4. In M. E. Brown (Ed.), Handbook of thermal analysis and calorimetry (Vol. 1, pp. 225–278). Elsevier Science B.V.  https://doi.org/10.1016/S1573-4374(98)80007-1.CrossRefGoogle Scholar
  8. Garavaglia, M. (2012). Analysis of an unknown aqueous sample by TG-IR-GC/MS. PerkinElmer. Retrieved from http://photos.labwrench.com/equipmentManuals/14602-5645.pdf.
  9. Niessen, W. M. A. (2017). Hyphenated techniques, applications of in mass spectrometry. In J. C. Lindon, G. E. Tranter, & D. W. Koppenaal (Eds.), Encyclopedia of spectroscopy and spectrometry (3rd ed., pp. 174–180). Oxford: Academic Press.  https://doi.org/10.1016/B978-0-12-409547-2.05240-9.CrossRefGoogle Scholar
  10. Onsree, T., & Tippayawong, N. (2017). Application of Gaussian smoothing technique in evaluation of biomass pyrolysis kinetics in macro-TGA. Energy Procedia, 138, 778–783.  https://doi.org/10.1016/j.egypro.2017.10.059.CrossRefGoogle Scholar
  11. Pope, M. I., & Judd, M. D. (1997). Differential thermal analysis—A guide to the technique and its applications. Heyden.Google Scholar
  12. Prestipino, M., Galvagno, A., Karlström, O., & Brink, A. (2018). Energy conversion of agricultural biomass char: Steam gasification kinetics. Energy, 161, 1055–1063.  https://doi.org/10.1016/j.energy.2018.07.205.CrossRefGoogle Scholar
  13. Saldarriaga, J. F., Aguado, R., Pablos, A., Amutio, M., Olazar, M., & Bilbao, J. (2015). Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel, 140, 744–751.  https://doi.org/10.1016/j.fuel.2014.10.024.CrossRefGoogle Scholar
  14. Stawski, D. (2009). The effect of sample weight in thermogravimetric analysis of low viscosity polypropylene in air atmosphere. Polymer Testing, 28(2), 223–225.  https://doi.org/10.1016/j.polymertesting.2008.12.003.CrossRefGoogle Scholar
  15. Van Humbeeck, J. (1998). Simultaneous thermal analysis, Chap. 11. In M. E. Brown (Ed.), Handbook of thermal analysis and calorimetry (Vol. 1, pp. 497–508). Elsevier Science B.V.  https://doi.org/10.1016/S1573-4374(98)80014-9.CrossRefGoogle Scholar
  16. Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520(1), 1–19.  https://doi.org/10.1016/j.tca.2011.03.034.CrossRefGoogle Scholar
  17. Xu, F., Wang, B., Yang, D., Ming, X., Jiang, Y., Hao, J., et al. (2018). TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire. Energy Conversion and Management, 175, 288–297.  https://doi.org/10.1016/j.enconman.2018.09.013.CrossRefGoogle Scholar
  18. Xu, Q., Ling, C., & Li, J. (2017). Microalgae decomposition in CO2 atmospheres by thermogravimetric analysis. Energy Procedia, 123, 381–386.  https://doi.org/10.1016/j.egypro.2017.07.273.CrossRefGoogle Scholar
  19. Zimbardi, F. (2000). Evaluation of reaction order and activation energy of char combustion by shift technique. Combustion Science and Technology, 156(1), 251–269.  https://doi.org/10.1080/00102200008947305.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Energy Technology, Faculty of Science and EngineeringÅbo Akademi UniversityVaasaFinland

Personalised recommendations