Advertisement

Some Parameters and Properties of Biomass Fuels

  • Cataldo De BlasioEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The main parameters of some kinds of biomass feedstock are given here as reference to simple energy balances where they can be utilized. The chapter presents data from diverse sources and starts by giving the properties of biomass in terms of its physical parameters. The evaluation of the calorific values (treated more extensively in the first part of this manuscript) is followed by data on the proximate and ultimate analysis of diverse kinds of biomass. The main parameters required for an overall energy balance are given, and this is followed by proximate and ultimate analysis numbers for different species. In addition, data related to agrofuels are given with the related air requirements for its combustion, and this is followed by combustion properties of peat, minor agrofuels, and related. The section continues with some tables where several data on the parameters, composition, and combustion properties for different types of biomass are given. Notions of stoichiometry are provided at the end of the chapter.

References

  1. Álvarez-Álvarez, P., Pizarro, C., Barrio-Anta, M., Cámara-Obregón, A., Bueno, J., Álvarez, A., et al. (2018). Evaluation of tree species for biomass energy production in northwest Spain. Forests, 9, 160.  https://doi.org/10.3390/f9040160.CrossRefGoogle Scholar
  2. Arce, M., Saavedra, Á., Míguez, J., Granada, E., Cacabelos, A., Arce, M. E., et al. (2013). Biomass fuel and combustion conditions selection in a fixed bed combustor. Energies, 6, 5973–5989.  https://doi.org/10.3390/en6115973.CrossRefGoogle Scholar
  3. Bahadori, A., Zahedi, G., Zendehboudi, S., & Jamili, A. (2014). Estimation of the effect of biomass moisture content on the direct combustion of sugarcane bagasse in boilers. International Journal of Sustainable Energy, 33, 349–356.  https://doi.org/10.1080/14786451.2012.748766.CrossRefGoogle Scholar
  4. Bartok, W., & Sarofim, A. F. (1991). Fossil fuel combustion: A source book (1st ed.). Wiley-Interscience.Google Scholar
  5. Borman, G. L., & Ragland, K. W. (1998). Combustion engineering. McGraw-Hill.Google Scholar
  6. Brügemann, J., & Gerds-Ploeger, H. (2013). Life is movement (Aristotle, 4th century BC). Netherlands Heart Journal, 21(10), 427–428.  https://doi.org/10.1007/s12471-013-0468-x.CrossRefGoogle Scholar
  7. Bushnell, D. J., Haluzok, C., & Dadkhah-Nikoo, A. (1990). Biomass fuel characterization : Testing and evaluating the combustion characteristics of selected biomass fuels. Final Report May 1, 1988–July, 1989 (No. DOE/BP-1363). Portland, OR (USA): USDOE Bonneville Power Administration; Corvallis, OR (USA): Oregon State Univ. Dept. of Mechanical Engineering.  https://doi.org/10.2172/6910422.
  8. Channiwala, S. A., & Parikh, P. P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81, 1051–1063.  https://doi.org/10.1016/S0016-2361(01)00131-4.CrossRefGoogle Scholar
  9. Chimonyo, V. G. P., Modi, A. T., & Mabhaudhi, T. (2018). Sorghum radiation use efficiency and biomass partitioning in intercrop systems. South African Journal of Botany, 118, 76–84.  https://doi.org/10.1016/j.sajb.2018.06.009.CrossRefGoogle Scholar
  10. Clarke, D., & Rieley, J. (2010). Strategy for responsible peatland management. Saarijärvi: International Peat Society.Google Scholar
  11. De Blasio, C., Lucca, G., Özdenkci, K., Mulas, M., Lundqvist, K., Koskinen, J., et al. (2015). A study on supercritical water gasification of black liquor conducted in stainless steel and nickel-chromium-molybdenum reactors. Journal of Chemical Technology and Biotechnology, 91(10), 2664–2678.  https://doi.org/10.1002/jctb.4871.CrossRefGoogle Scholar
  12. Demirbaş, A. (2005). Estimating of structural composition of wood and non-wood biomass samples. Energy Sources, 27, 761–767.  https://doi.org/10.1080/00908310490450971.CrossRefGoogle Scholar
  13. ECN, The Netherlands. (2018). Phyllis2—Database for biomass and waste (WWW Document). https://www.ecn.nl/phyllis2/. Accessed August 22, 2018.
  14. Energy Efficiency & Renewable Energy Department, USA. (2018). Bioenergy Technologies Office|Department of Energy (WWW Document). https://www.energy.gov/eere/bioenergy. Accessed August 22, 2018.
  15. Gholz, H. L. (1982). Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific northwest. Ecology, 63, 469–481.  https://doi.org/10.2307/1938964.CrossRefGoogle Scholar
  16. Gujarat Pollution Control Board, Paryavaran Bhavan. (2014). Pollution control guidelines for conversion of boilers/utilities from natural gas to solid fuels (coal, lignite, agro fuels etc).Google Scholar
  17. Jankowski, K. J., Dubis, B., Budzyński, W. S., Bórawski, P., & Bułkowska, K. (2016). Energy efficiency of crops grown for biogas production in a large-scale farm in Poland. Energy, 109, 277–286.  https://doi.org/10.1016/j.energy.2016.04.087.CrossRefGoogle Scholar
  18. Jenkins, B. (1993). Properties of biomass. In Biomass energy fundamentals (EPRI Report).Google Scholar
  19. Jenkins, B. M., Baxter, L. L., Miles, T. R., Jr., & Miles, T. (1998). Combustion properties of biomass. Fuel Processing Technology, 54, 17–46.CrossRefGoogle Scholar
  20. Jezierska-Thöle, A., Rudnicki, R., & Kluba, M. (2016). Development of energy crops cultivation for biomass production in Poland. Renewable and Sustainable Energy Reviews, 62, 534–545.  https://doi.org/10.1016/j.rser.2016.05.024.CrossRefGoogle Scholar
  21. Ksenzhek, O. S., & Volkov, A. G. (1998). Plant energetics. San Diego, California: Academic Press.Google Scholar
  22. Lau, F. S., Roberts, M. J., Rue, D. M., Punwani, D. V., Wen, W. -W., & Johnson, P. B. (1987). Peat beneficiation by wet carbonization. International Journal of Coal Geology, 8, 111–121.  https://doi.org/10.1016/0166-5162(87)90026-7.CrossRefGoogle Scholar
  23. Liu, K., Xie, W., Li, D., Pan, W. -P., Riley, J. T., & Riga, A. (2000). The effect of chlorine and sulfur on the composition of ash deposits in a fluidized bed combustion system. Energy Fuels, 14, 963–972.  https://doi.org/10.1021/ef990197k.CrossRefGoogle Scholar
  24. Manickam, I. N., Ravindran, D. D., & Subramanian, D. P. (2006). Biomass densification methods and mechanism. Cogeneration and Distributed Generation Journal, 21, 33–45.  https://doi.org/10.1080/15453660609509098.CrossRefGoogle Scholar
  25. Minkkinen, K., Korhonen, R., Savolainen, I., & Laine, J. (2002). Carbon balance and radiative forcing of Finnish peatlands 1900–2100—The impact of forestry drainage. Global Change Biology, 8, 785–799.  https://doi.org/10.1046/j.1365-2486.2002.00504.x.CrossRefGoogle Scholar
  26. Motta, I. L., Miranda, N. T., Maciel Filho, R., & Wolf Maciel, M. R. (2018). Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renewable and Sustainable Energy Reviews, 94, 998–1023.  https://doi.org/10.1016/j.rser.2018.06.042.CrossRefGoogle Scholar
  27. Pessarakli, M. (2005). Handbook of photosynthesis. Boca Raton: CRC Press, Taylor & Francis Group.Google Scholar
  28. Rayaprolu, K. (2009). Boilers for power and process. Boca Raton: CRC Press, Taylor & Francis Group.Google Scholar
  29. Reed, T. B., & Golden, A. D. (1988). Handbook of biomass downdraft gasifier engine systems.Google Scholar
  30. Rumble, J. (2018). CRC handbook of chemistry and physics. CRC Press, Taylor & Francis Group.Google Scholar
  31. Saastamoinen, J. (2015). Release profile of volatiles in fluidised bed combustion of biomass. Journal of Fundamentals of Renewable Energy and Applications, 5, 1–12.  https://doi.org/10.4172/2090-4541.1000148.CrossRefGoogle Scholar
  32. Serup, H., Kofman, P. D., Falster, H., Gamborg, C., Gundersen, P., Hansen, L., et al. (2005). Wood for energy production. Dublin: Coford.Google Scholar
  33. Song, H., Quinton, K., Peng, Z., Zhao, H., Ladommatos, N., Song, H., et al. (2016). Effects of oxygen content of fuels on combustion and emissions of diesel engines. Energies, 9, 28.  https://doi.org/10.3390/en9010028.CrossRefGoogle Scholar
  34. Tillman, D. (1978). Wood as an energy resource. New York, USA: Academic Press.  https://doi.org/10.1016/B978-0-12-691260-9.X5001-0.
  35. Turpeinen, T. (2016). Developing biofuels production from food industry wastes in the rural area of Kenya. Savonia: University of Applied Sciences Technology and Transport.Google Scholar
  36. Van Loo, S., & Koppejan, J. (2008). The handbook of biomass gasification and co-firing. Earthscan.Google Scholar
  37. Vassilev, S. V., Vassileva, C. G., Song, Y. C., Li, W. Y., & Feng, J. (2017). Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel, 208, 377–409.  https://doi.org/10.1016/j.fuel.2017.07.036.CrossRefGoogle Scholar
  38. Virtanen, K., Hänninen, P., Kallinen, R. L., Virtiainen, S., Herranen, T., & Jokisaari, R. (2003). The peat reserves of Finland in 2000. Geological Survey of Finland. Vammalan Kirjapaino Oy.Google Scholar
  39. Yang, Y. B., Ryu, C., Khor, A., & Yates, N. (2005). Effect of fuel properties on biomass combustion. Part II. Modelling approach—Identification of the controlling factors. Fuel, 84, 2116–2130.  https://doi.org/10.1016/j.fuel.2005.04.023.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Energy Technology, Faculty of Science and EngineeringÅbo Akademi UniversityVaasaFinland

Personalised recommendations