Advertisement

Fischer–Tropsch (FT) Synthesis to Biofuels (BtL Process)

  • Cataldo De BlasioEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The Fischer–Tropsch synthesis of long-chain hydrocarbons is described here along with the process involved. Catalysis plays a fundamental role within this method, and therefore information on the diverse catalysts used is given here. Different kinds of reactors and configurations are also used, and a description of the solutions used is provided together with the main reactors’ parameters and catalysts utilized. Naturally, the diverse reaction parameters are also affecting importantly the yields and the rates involved and, for these reasons, this part is taken into account as well. The kinetics of Fischer–Tropsch synthesis is characterized by several models which are provided in literature, and some emphasis is given here on the theory related to the chain growth probability and the distribution of the products in FT synthesis. The chapter ends with the theory of the syngas treatment in FT synthesis. The wet-cold gas cleaning process is treated here together with the dry-hot gas cleaning process. Finally, some details on biomass gasification methods are given along with the main chemical reactions involved.

References

  1. Anderson, R. B. (1956a). Catalysis Vol IV: Hydrocarbon synthesis, hydrogenation and Cyclization. New York, USA: Reinhold Publishing Corporation.Google Scholar
  2. Anderson, R. B. (1956b). Catalysis Vol IV: Hydrocarbon synthesis, hydrogenation and cyclization. New York, USA: Reinhold Publishing Corporation.Google Scholar
  3. Atwood, H. E., & Bennett, C. O. (1979). Kinetics of the Fischer-Tropsch reaction over iron. Industrial and Engineering Chemistry Product Research and Development, 18, 163–170.CrossRefGoogle Scholar
  4. Bai, L., Xiang, H.-W., Li, Y.-W., Han, Y.-Z., & Zhong, B. (2002). Slurry phase Fischer–Tropsch synthesis over manganese-promoted iron ultrafine particle catalyst. Fuel, 7th China-Japan Symposium on C1 Chemistry, 81, 1577–1581.  https://doi.org/10.1016/S0016-2361(02)00089-3.CrossRefGoogle Scholar
  5. Borg, Ø., Eri, S., Blekkan, E. A., Storsæter, S., Wigum, H., Rytter, E., et al. (2007). Fischer-Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables. Journal of Catalysis, 248, 89–100.  https://doi.org/10.1016/j.jcat.2007.03.008.CrossRefGoogle Scholar
  6. Brötz, W. (1949). Zur Systematik der Fischer-Tropsch catalyze. Zeitscrift für Elektrochemie, 53, 301.Google Scholar
  7. Chanenchuk, C. A., Yates, I. C., & Satterfield, C. N. (1991). The Fischer-Tropsch synthesis with a mechanical mixture of a cobalt catalyst and a copper-based water gas shift catalyst. Energy & Fuels, 5, 847–855.CrossRefGoogle Scholar
  8. Cheng, J., Hu, P., Ellis, P., French, S., Kelly, G., & Lok, C. M. (2008). A DFT study of the chain growth probability in Fischer-Tropsch synthesis. Journal of Catalysis, 257, 221–228.  https://doi.org/10.1016/j.jcat.2008.05.006.CrossRefGoogle Scholar
  9. Chin, Y., Hu, J., Cao, C., Gao, Y., & Wang, Y. (2005). Preparation of a novel structured catalyst based on aligned carbon nanotube arrays for a microchannel Fischer-Tropsch synthesis reactor. Catalyst Today, Catalytic Microstructured Reactors Catalytic Microstructured Reactors, 110, 47–52.  https://doi.org/10.1016/j.cattod.2005.09.007.CrossRefGoogle Scholar
  10. Dalai, A. K., & Davis, B. H. (2008). Fischer-Tropsch synthesis: A review of water effects on the performances of unsupported and supported Co catalysts. Applied Catalysis General, 348, 1–15.  https://doi.org/10.1016/j.apcata.2008.06.021.CrossRefGoogle Scholar
  11. Das, T. K., Jacobs, G., Patterson, P. M., Conner, W. A., Li, J., & Davis, B. H. (2003). Fischer-Tropsch synthesis: characterization and catalytic properties of rhenium promoted cobalt alumina catalysts☆. Fuel, 82, 805–815.  https://doi.org/10.1016/S0016-2361(02)00361-7.CrossRefGoogle Scholar
  12. Datt, P. (2011). Latent heat of vaporization/condensation. In V. P. Singh, P. Singh & U. K. Haritashya (Eds.), Encyclopedia of snow, ice and glaciers (pp. 703–703). Springer Netherlands, Dordrecht.  https://doi.org/10.1007/978-90-481-2642-2_327.Google Scholar
  13. De Blasio, C., Carletti, C., Westerlund, T., & Järvinen, M. (2013). On modeling the dissolution of sedimentary rocks in acidic environments. An overview of selected mathematical methods with presentation of a case study. Journal of Mathematical Chemistry, 51(8), 2120–2143.  https://doi.org/10.1007/s10910-013-0202-3.MathSciNetCrossRefGoogle Scholar
  14. De Deugd, R. M. (2004). Fischer-Tropsch synthesis revisited; efficiency and selectivity benefits from imposing temporal and/or spatial structure in the reactor. Ponsen & Looijen B.V, Wageningen, The Netherlands.Google Scholar
  15. de Klerk, A., & Furimsky, E. (2010). Catalysis in the refining of Fischer-Tropsch Syncrude. RSC Catalysts Series 4. RCS Publishing.Google Scholar
  16. Deckwer, W., Kokuun, R., Sanders, E., & Ledakowicz, S. (1986). Kinetic studies of Fischer-Tropsch synthesis on suspended iron/potassium catalyst—Rate inhibition by carbon dioxide and water. Industrial and Engineering Chemistry Process Design and Development, 25, 643–649.CrossRefGoogle Scholar
  17. Demitras, G. C., & Muetterties, E. L. (1977). Metal clusters in catalysis. A new fischer-tropsch synthesis. Journal of the American Chemical Society, 99, 2796–2797.CrossRefGoogle Scholar
  18. Ernst, B., Libs, S., Chaumette, P., & Kiennemann, A. (1999). Preparation and characterization of Fischer-Tropsch active Co/SiO2 catalysts. Applied Catalysis General, 186, 145–168.  https://doi.org/10.1016/S0926-860X(99)00170-2.CrossRefGoogle Scholar
  19. Espinoza, R. L., Steynberg, A. P., Jager, B., & Vosloo, A. C. (1999). Low temperature Fischer-Tropsch synthesis from a Sasol perspective. Applied Catalysis General, 186, 13–26.  https://doi.org/10.1016/S0926-860X(99)00161-1.CrossRefGoogle Scholar
  20. Geerlings, J. J. C., Wilson, J. H., Kramer, G. J., Kuipers, H. P. C. E., Hoek, A., & Huisman, H. M. (1999). Fischer-Tropsch technology—From active site to commercial process. Applied Catalysis General, 186, 27–40.  https://doi.org/10.1016/S0926-860X(99)00162-3.CrossRefGoogle Scholar
  21. Hao, Q., Bai, L., Xiang, H., & Li, Y. (2009). Activation pressure studies with an iron-based catalyst for slurry Fischer-Tropsch synthesis. Journal of Natural Gas Chemistry, 18, 429–435.  https://doi.org/10.1016/S1003-9953(08)60134-6.CrossRefGoogle Scholar
  22. Huang, C., Xu, C., Wang, B., Hu, X., Li, J., Liu, J., et al. (2018). High production of syngas from catalytic steam reforming of biomass glycerol in the presence of methane. Biomass and Bioenergy, 119, 173–178.  https://doi.org/10.1016/j.biombioe.2018.05.006.CrossRefGoogle Scholar
  23. Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., & Gu, S. (2014). A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catalysis Science & Technology, 4, 2210–2229.  https://doi.org/10.1039/C4CY00327F.CrossRefGoogle Scholar
  24. Ji, Y.-Y., Xiang, H.-W., Yang, J.-L., Xu, Y.-Y., Li, Y.-W., & Zhong, B. (2001). Effect of reaction conditions on the product distribution during Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst. Applied Catalysis General, 214, 77–86.  https://doi.org/10.1016/S0926-860X(01)00480-X.CrossRefGoogle Scholar
  25. Jones, D., Bhattacharyya, D., Turton, R., & Zitney, S. E. (2011). Optimal design and integration of an air separation unit (ASU) for an integrated gasification combined cycle (IGCC) power plant with CO2 capture. Fuel Processing Technology, 92, 1685–1695.  https://doi.org/10.1016/j.fuproc.2011.04.018.CrossRefGoogle Scholar
  26. Kunii, D., & Levenspiel, O. (1991). Fluidization engineering (2nd ed.). Elsevier.Google Scholar
  27. Liu, Y., Teng, B.-T., Guo, X.-H., Li, Y., Chang, J., Tian, L., et al. (2007). Effect of reaction conditions on the catalytic performance of Fe-Mn catalyst for Fischer-Tropsch synthesis. Journal of Molecular Catalysis Chemical, 272, 182–190.  https://doi.org/10.1016/j.molcata.2007.03.046.CrossRefGoogle Scholar
  28. Ma, T., Imai, H., Shige, T., Sugio, T., & Li, X. (2015). Synthesis of hydrocarbons from H2-deficient syngas in fischer-tropsch synthesis over co-based catalyst coupled with Fe-based catalyst as water-gas shift reaction. Journal Nanomaterial. [WWW Document]..  https://doi.org/10.1155/2015/268121.Google Scholar
  29. Oukaci, R., Singleton, A. H., & Goodwin, J. G., Jr. (1999). Comparison of patented Co F-T catalysts using fixed-bed and slurry bubble column reactors. Applied Catalysis General, 186, 129–144.  https://doi.org/10.1016/S0926-860X(99)00169-6.CrossRefGoogle Scholar
  30. Outi, A., Rautavuoma, I., & van der Baan, H. S. (1981). Kinetics and mechanism of the fischer tropsch hydrocarbon synthesis on a cobalt on alumina catalyst. Applied Catalysis, 1, 247–272.CrossRefGoogle Scholar
  31. Özdenkçi, K., De Blasio, C., Muddassar, H. R., Melin, K., Oinas, P., Koskinen, J., et al. (2017). A novel biorefinery integration concept for lignocellulosic biomass. Energy Conversion and Management, 149, 974–987.  https://doi.org/10.1016/j.enconman.2017.04.034.CrossRefGoogle Scholar
  32. Pannell, R. B., Kibby, C. L., Kobylinski, T. P. (1981). A steady-state study of Fischer-Tropsch product distributions over cobalt, iron and ruthenium. Studies in Surface Science and Catalysis, 7(A), 447–459.Google Scholar
  33. Patzlaff, J., Liu, Y., Graffmann, C., & Gaube, J. (1999). Studies on product distributions of iron and cobalt catalyzed Fischer-Tropsch synthesis. Applied Catalysis General, 186, 109–119.  https://doi.org/10.1016/S0926-860X(99)00167-2.CrossRefGoogle Scholar
  34. Pour, A. N., Zamani, Y., Tavasoli, A., Kamali Shahri, S. M., & Taheri, S. A. (2008). Study on products distribution of iron and iron–zeolite catalysts in Fischer-Tropsch synthesis. Fuel, 87, 2004–2012.  https://doi.org/10.1016/j.fuel.2007.10.014.CrossRefGoogle Scholar
  35. Riedel, T., Claeys, M., Schulz, H., Schaub, G., Nam, S.-S., Jun, K.-W., et al. (1999). Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts. Applied Catalysis General, 186, 201–213.  https://doi.org/10.1016/S0926-860X(99)00173-8.CrossRefGoogle Scholar
  36. Sari, A., Zamani, Y., & Taheri, S. A. (2009). Intrinsic kinetics of Fischer-Tropsch reactions over an industrial Co–Ru/γ-Al2O3 catalyst in slurry phase reactor. Fuel Processing Technology, 90, 1305–1313.  https://doi.org/10.1016/j.fuproc.2009.06.024.CrossRefGoogle Scholar
  37. Sarup, B., & Wojciechowski, B. W. (1989). Studies of the fischer-tropsch synthesis on a cobalt catalyst II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons. Canadian Journal of Chemical Engineering, 67, 62–74.CrossRefGoogle Scholar
  38. Schulz, H. (1999). Short history and present trends of Fischer-Tropsch synthesis. Applied Catalysis General, 186, 3–12.  https://doi.org/10.1016/S0926-860X(99)00160-X.CrossRefGoogle Scholar
  39. Schulz, H., & Claeys, M. (1999). Kinetic modelling of Fischer-Tropsch product distributions. Applied Catalysis General, 186, 91–107.  https://doi.org/10.1016/S0926-860X(99)00166-0.CrossRefGoogle Scholar
  40. Shadle, L. J., & Breault, R. W. (2012). Integrated gasification combined cycle (IGCC). In W.-Y. Chen, J. Seiner, T. Suzuki & M. Lackner (Eds.), Handbook of climate change mitigation (pp. 1545–1604). Springer US, New York, NY.  https://doi.org/10.1007/978-1-4419-7991-9_40.CrossRefGoogle Scholar
  41. Sie, S. T., & Krishna, R. (1999). Fundamentals and selection of advanced Fischer-Tropsch reactors. Applied Catalysis General, 186, 55–70.  https://doi.org/10.1016/S0926-860X(99)00164-7.CrossRefGoogle Scholar
  42. Soomro, A., Chen, S., Ma, S., & Xiang, W. (2018). Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process, Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process. Energy Environment 0958305X18767848.  https://doi.org/10.1177/0958305X18767848.CrossRefGoogle Scholar
  43. Steynberg, A. P., Dry, M. E., Davis, B. H., & Breman, B. B. (2004). Fischer-Tropsch reactors, Chap. 2. In A. Steynberg & M. Dry (Eds.), Studies in surface science and catalysis, Fischer-Tropsch Technology (pp. 64–195). Elsevier.  https://doi.org/10.1016/S0167-2991(04)80459-2.CrossRefGoogle Scholar
  44. Steynberg, A. P., Espinoza, R. L., Jager, B., & Vosloo, A. C. (1999). High temperature Fischer-Tropsch synthesis in commercial practice. Applied Catalysis General, 186, 41–54.  https://doi.org/10.1016/S0926-860X(99)00163-5.CrossRefGoogle Scholar
  45. Tavakoli, A., Sohrabi, M., & Kargari, A. (2008). Application of Anderson–Schulz–Flory (ASF) equation in the product distribution of slurry phase FT synthesis with nanosized iron catalysts. Chemical Engineering Journal, 136, 358–363.  https://doi.org/10.1016/j.cej.2007.04.017.CrossRefGoogle Scholar
  46. Tavasoli, A., Pour, A. N., & Ahangari, M. G. (2010). Kinetics and product distribution studies on ruthenium-promoted cobalt/alumina Fischer-Tropsch synthesis catalyst. Journal of Natural Gas Chemistry, 19, 653–659.  https://doi.org/10.1016/S1003-9953(09)60133-X.CrossRefGoogle Scholar
  47. Triantafyllidis, K., Lappas, A., & Stöcker, M. (2013). The role of catalysis for the sustainable production of bio-fuels and bio-chemicals. Elsevier.Google Scholar
  48. Wojciechowski, B. W. (1988). The kinetics of Fischer-Tropsch synthesis. Catalysis Reviews–Science and Engineering, 30, 629.CrossRefGoogle Scholar
  49. Xu, D., Li, W., Duan, H., Ge, Q., & Xu, H. (2005). Reaction performance and characterization of Co/Al2O3 Fischer-Tropsch catalysts promoted with Pt, Pd and Ru. Catalysis Letters, 102, 229–235.  https://doi.org/10.1007/s10562-005-5861-7.CrossRefGoogle Scholar
  50. Yang, C., Massoth, F. E., Oblad, A. G. (1979). In E. L. Kugler & F. W. Steffgen (Eds.), Hydrocarbon synthesis from carbon monoxide and hydrogen. Washington, D.C.: ACS.Google Scholar
  51. Yates, I. C., & Satterfield, C. N. (1991). Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst. Energy & Fuels, 5, 168–173.  https://doi.org/10.1021/ef00025a029.CrossRefGoogle Scholar
  52. Zhang, C.-H., Yang, Y., Teng, B.-T., Li, T.-Z., Zheng, H.-Y., Xiang, H.-W., et al. (2006). Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper. Journal of Catalysis, 237, 405–415.  https://doi.org/10.1016/j.jcat.2005.11.004.CrossRefGoogle Scholar
  53. Zwart, R., Van der Heijden, S., Emmen, R., Dall Bentzen, J., Ahrenfeldt, J., Stoholm, P., et al. (2010). Tar removal from low-temperature gasifiers. Risø DTU, DFBT and Anhydro, Denmark: ECN and Dahlman from the Netherlands and Dall Energy.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Energy Technology, Faculty of Science and EngineeringÅbo Akademi UniversityVaasaFinland

Personalised recommendations