Advertisement

Processes of Bioethanol Production

  • Cataldo De BlasioEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

In this chapter, the production processes of bioethanol from diverse sources are described with some attention on the pretreatment of the raw material available. The production of bioethanol from sugarcane is described following the main production steps and some data are given on the process conditions and operations without going into the theoretical details for each of these operations. The case of corn starch is considered along with the main pretreatment options, such as dry-grind, dry-milling, and wet-milling processes. After the schematic presentation of a dry- and wet-milling ethanol production plant, the chapter ends with the basic notions of distillation as a final stage for the biofuel product.

References

  1. Alriols, M. G., Garcia, A., Chouaibi, F., Hajji, N., Labidi, J., Klemes, J., et al. (2010). Lignocellulosic biorefinery processes energy integration. Chemical Engineering Transactions, 21, 553–558.  https://doi.org/10.3303/CET1021093.CrossRefGoogle Scholar
  2. Amores, M. J., Mele, F. D., Jiménez, L., & Castells, F. (2013). Life cycle assessment of fuel ethanol from sugarcane in Argentina. International Journal of Life Cycle Assessment, 18, 1344–1357.  https://doi.org/10.1007/s11367.013-0584-2.CrossRefGoogle Scholar
  3. Bajpai, P., & Margaritis, A. (1987). The effect of temperature and pH on ethanol production by free and immobilized cells of Kluyveromyces marxianus grown on Jerusalem artichoke extract. Biotechnology and Bioengineering, 30, 306–313.  https://doi.org/10.1002/bit.260300222.CrossRefGoogle Scholar
  4. Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2006). Transport phenomena (2nd ed.). Wiley.Google Scholar
  5. Bothast, R. J., & Schlicher, M. A. (2005). Biotechnological processes for conversion of corn into ethanol. Applied Microbiology and Biotechnology, 67, 19–25.  https://doi.org/10.1007/s00253-004-1819-8.CrossRefGoogle Scholar
  6. Bunch, A. W. (1994). High cell density growth of micro-organisms. Biotechnology and Genetic Engineering Reviews, 12, 535–562.  https://doi.org/10.1080/02648725.1994.10647921.CrossRefGoogle Scholar
  7. Choonut, A., Yunu, T., Pichid, N., & Sangkharak, K. (2015). Ethanol production from reused liquid stillage. In 2015 International Conference on Alternative Energy in Developing Countries and Emerging Economies. Energy Procedia, 79, 808–814.  https://doi.org/10.1016/j.egypro.2015.11.570.CrossRefGoogle Scholar
  8. Cortes-Rodríguez, E. F., Fukushima, N. A., Palacios-Bereche, R., Ensinas, A. V., & Nebra, S. A. (2018). Vinasse concentration and juice evaporation system integrated to the conventional ethanol production process from sugarcane—Heat integration and impacts in cogeneration system. Renewable Energy, 115, 474–488.  https://doi.org/10.1016/j.renene.2017.08.036.CrossRefGoogle Scholar
  9. De Jong, W., & Van Ommen, R. (2014). Biomass as a sustainable energy source for the future: Fundamentals of conversion processes. Wiley.Google Scholar
  10. Drapcho, C. M., Nghiem, J., & Walker, T. (2008a). Biofuels engineering process technology. McGraw-Hill Education.Google Scholar
  11. Drapcho, C. M., Nghim, N. P., & Walker, T. (2008b). Biofuels, bioproducts and biorefining. McGraw-Hill.Google Scholar
  12. Ghareib, M., Youssef, K. A., & Khalil, A. A. (1988). Ethanol tolerance of Saccharomyces cerevisiae and its relationship to lipid content and composition. Folia Microbiologica (Praha), 33, 447–452.  https://doi.org/10.1007/BF02925769.CrossRefGoogle Scholar
  13. Greetham, D., Zaky, A., Makanjuola, O., & Du, C. (2018). A brief review on bioethanol production using marine biomass, marine microorganism and seawater. Current Opinion in Green Sustainable Chemistry Bioresources and Biochemicals/Biofuels and Bioenergy, 14, 53–59.  https://doi.org/10.1016/j.cogsc.2018.06.008.CrossRefGoogle Scholar
  14. Hyun, H. H., & Zeikus, J. G. (1985). General biochemical characterization of thermostable pullulanase and glucoamylase from Clostridium thermohydrosulfuricum. Applied and Environment Microbiology, 49, 1168–1173.Google Scholar
  15. Kálmán, G., Recseg, K., Gáspár, M., & Réczey, K. (2006). Novel approach of corn fiber utilization. Applied Biochemistry and Biotechnology, 131, 738–750.  https://doi.org/10.1385/ABAB:131:1:738.CrossRefGoogle Scholar
  16. Kim, S., & Dale, B. E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 26, 361–375.  https://doi.org/10.1016/j.biombioe.2003.08.002.CrossRefGoogle Scholar
  17. Kujawski, W., & Zielinski, L. (2006). Bioethanol—One of the renewable energy sources. Environment Protection Engineering, 32, 143–149.Google Scholar
  18. Kumar, D., & Singh, V. (2016). Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production. Biotechnology for Biofuels, 9.  https://doi.org/10.1186/s13068-016-0648-1.
  19. Kumar, D., & Singh, V. (2019). Bioethanol production from corn, Chap. 22. In S. O. Serna-Saldivar (Ed.), Corn (3rd ed., pp. 615–631). Oxford: AACC International Press.  https://doi.org/10.1016/B978-0-12-811971-6.00022-X.CrossRefGoogle Scholar
  20. Kurambhatti, C. V., Kumar, D., Rausch, K. D., Tumbleson, M. E., & Singh, V. (2018). Increasing ethanol yield through fiber conversion in corn dry grind process. Bioresource Technology, 270, 742–745.  https://doi.org/10.1016/j.biortech.2018.09.120.CrossRefGoogle Scholar
  21. Madson, P. W. (2003). Ethanol distillation: The fundamentals. In The alcohol textbook. The Nottingham University Press.Google Scholar
  22. Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., et al. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52–61.  https://doi.org/10.1016/j.bbrep.2017.03.003.CrossRefGoogle Scholar
  23. Onay, M. (2018). Bioethanol production from Nannochloropsis gaditana in municipal wastewater. In 5th International Conference on Energy and Environment Research, ICEER 2018, Prague, Czech Republic, July 23–27, 2018. Energy Procedia, 153, 253–257.  https://doi.org/10.1016/j.egypro.2018.10.032.CrossRefGoogle Scholar
  24. Onwuakor Chijioke, E., Hans-Anukam Uzunma., & Uzokwe Munachi, J. (2017). Production of ethanol and biomass from rice husk using cultures of Aspergillus flavus, Aspergillus eamarii and Saccharomyces cerevisiae. American Journal of Microbiological Research, 5, 86–90.  https://doi.org/10.12691/ajmr-5-4-3.
  25. Palacios-Bereche, R., Ensinas, A. V., Modesto, M., & Nebra, S. A. (2014). Mechanical vapour recompression incorporated to the ethanol production from sugarcane and thermal integration to the overall process applying pinch analysis. Chemical Engineering Transactions, 39, 397–402.Google Scholar
  26. Phansroy, N., Khawdas, W., Watanabe, K., Aso, Y., & Ohara, H. (2018). Microbial fuel cells equipped with an iron-plated carbon-felt anode and Shewanella oneidensis MR-1 with corn steep liquor as a fuel. Journal of Bioscience and Bioengineering, 126, 514–521.  https://doi.org/10.1016/j.jbiosc.2018.04.011.CrossRefGoogle Scholar
  27. Schwietzke, S., Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. (2009). Ethanol production from maize. In Molecular genetic approaches to maize improvement. New York: Springer.Google Scholar
  28. Sutjahjo, D. H. (2018). The characteristics of bioethanol fuel made of vegetable raw materials. In Materials science and engineering. IOP Publishing.  https://doi.org/10.1088/1757.899X/296/1/012019.
  29. Syarif, H. U., Suriamihardja, D. A., Selintung, M., & Wahab, A. W. (2016). Analysis SEM the chemical and physics composition of used rice husks as an absorber plate. International Journal of Engineering Science and Applications, 2, 25–30.Google Scholar
  30. Treybal, R. E. (1980). Mass transfer operations (3rd ed.). McGraw-Hill.Google Scholar
  31. Unrean, P., & Srienc, F. (2010). Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains. Journal of Biotechnology, 150, 215–223.  https://doi.org/10.1016/j.jbiotec.2010.08.002.CrossRefGoogle Scholar
  32. Velasquez, H. I., Mesa, C., & Giraldo, S. A. (2013). Energy and exergy analysis of the combined production process of sugar and ethanol from sugarcane (Colombia case study). In International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems. Presented at the ECOS 2013.Google Scholar
  33. Veljković, V. B., Biberdžić, M. O., Banković-Ilić, I. B., Djalović, I. G., Tasić, M. B., Nježić, Z. B., et al. (2018). Biodiesel production from corn oil: A review. Renewable and Sustainable Energy Reviews, 91, 531–548.  https://doi.org/10.1016/j.rser.2018.04.024.CrossRefGoogle Scholar
  34. Veloso, I. I. K., Rodrigues, K. C. S., Sonego, J. L. S., Cruz, A. J. G., & Badino, A. C. (2019). Fed-batch ethanol fermentation at low temperature as a way to obtain highly concentrated alcoholic wines: Modeling and optimization. Biochemical Engineering Journal, 141, 60–70.  https://doi.org/10.1016/j.bej.2018.10.005.CrossRefGoogle Scholar
  35. Vertes, A. A., Qureshi, N., Blaschek, H. P., & Yukawa, H. (Eds.). (2010). Biomass to biofuels: Strategies for global industries. Oxford, UK: Wiley.Google Scholar
  36. Vohra, M., Manwar, J., Manmode, R., Padgilwar, S., & Patil, S. (2014). Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering, 2, 573–584.  https://doi.org/10.1016/j.jece.2013.10.013.CrossRefGoogle Scholar
  37. Watanabe, M. (2009). Ethanol production in Brazil: Bridging its economic and environmental aspects. International Association for Energy Economics.Google Scholar
  38. Zakhartsev, M., Yang, X., Reuss, M., & Pörtner, H. O. (2015). Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield. Journal of Thermal Biology, 52, 117–129.  https://doi.org/10.1016/j.jtherbio.2015.05.008.CrossRefGoogle Scholar
  39. Zhang, C. -H., Yang, Y., Teng, B. -T., Li, T. -Z., Zheng, H. -Y., Xiang, H. -W., et al. (2006). Study of an iron-manganese -Tropsch synthesis catalyst promoted with copper. Journal of Catalysis, 237, 405–415.  https://doi.org/10.1016/j.jcat.2005.11.004.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Energy Technology, Faculty of Science and EngineeringÅbo Akademi UniversityVaasaFinland

Personalised recommendations