Advertisement

Electronegativity and Microbial Catalysis

  • Cataldo De BlasioEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The chapter focuses on the general explanation of how microorganisms produce biofuels. After giving classifications of microorganisms with respect to their functioning, the author of this chapter gives examples and many references on the subject. The common biological pathways are also reported together with the explanation of the main energy carriers needed during the biological processes. The chapter continues by explaining the correlation between oxidation of substrates, reduction of ultimate electron acceptors and half-cell reactions. The diverse processes/steps involved in anaerobic digestion and their kinetic behavior can be, for instance, described mathematically, and there are several models available in the literature.

References

  1. Abrini, J., Naveau, H., & Nyns, E.-J. (1994). Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Archives of Microbiology, 161, 345–351.  https://doi.org/10.1007/BF00303591.CrossRefGoogle Scholar
  2. Andrews, J. F. (1969). Dynamic model of the anaerobic digestion model. Journal of the Sanitary Engineering Division American Society Civil Engineers SA, 1, 95–116.Google Scholar
  3. Balch, W. E., Schoberth, S., Tanner, R. S., & Wolfe, R. S. (1977). Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. International Journal of Systematic and Evolutionary Microbiology, 27, 355–361.  https://doi.org/10.1099/00207713-27-4-355.CrossRefGoogle Scholar
  4. Barik, S., Prieto, S., Harrison, S. B., Clausen, E. C., & Gaddy, J. L. (1988). Biological production of alcohols from coal through indirect liquefaction. Applied Biochemistry and Biotechnology, 18, 363–378.  https://doi.org/10.1007/BF02930840.CrossRefGoogle Scholar
  5. Camacho, A. (2009). Sulfur bacteria. In G. E. Likens (Ed.), Encyclopedia of inland waters (pp 261–278). Oxford: Academic Press.  https://doi.org/10.1016/B978-012370626-3.00128-9.CrossRefGoogle Scholar
  6. De Blasio, C., Carletti, C., Lundell, A., Visuri, V.-V., Kokkonen, T., Westerlund, T., et al. (2016). Employing a step-wise titration method under semi-slow reaction regime for evaluating the reactivity of limestone and dolomite in acidic environment. Minerals Engineering, 86, 43–58.  https://doi.org/10.1016/j.mineng.2015.11.011.CrossRefGoogle Scholar
  7. Gerhardt, M., Svetlichny, V., Sokolova, T. G., Zavarzin, G. A., & Ringpfeil, M. (1991). Bacterial CO utilization with H2 production by the strictly anaerobic lithoautotrophic thermophilic bacterium Carboxydothermus hydrogenus DSM 6008 isolated from a hot swamp. FEMS Microbiology Letters, 83, 267–271.CrossRefGoogle Scholar
  8. Golder, R. H. (1979). Patterns in the Embden-Meyerhof pathway of glycolysis. Biochemical Education, 7, 7–8.  https://doi.org/10.1016/0307-4412(79)90007-4.CrossRefGoogle Scholar
  9. Graef, S. P., & Andrews, J. F. (1974). Stability and control of anaerobic digestion. Journal of Water Pollution Control Federation, 46, 666–683.Google Scholar
  10. Hill, D. T., & Barth, C. L. (1977). A Dynamic model for simulation of animal waste digestion. Journal of Water Pollution Control Federation, 49, 2129–2143.Google Scholar
  11. Jung, G. Y., Jung, H. O., Kim, J. R., Ahn, Y., & Park, S. (1999). Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnology Letters, 21, 525–529.  https://doi.org/10.1023/A:1005560630351.CrossRefGoogle Scholar
  12. Kamel, K. S., Halperin, M. L. (2017). Ketoacidosis, Chap. 5. In K. S. Kamel & M. L. Halperin (Eds.), Fluid, electrolyte and acid-base physiology (5th ed., pp. 99–139). Philadelphia: Elsevier.  https://doi.org/10.1016/B978-0-323-35515-5.00005-1.CrossRefGoogle Scholar
  13. Kanehisa Laboratories. (2018). KEGG: Kyoto encyclopedia of genes and genomes [WWW Document]. https://www.kegg.jp/. Accessed July 15, 18.
  14. Keller, M. W., Schut, G. J., Lipscomb, G. L., Menon, A. L., Iwuchukwu, I. J., Leuko, T. T., et al. (2013). Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proceedings of National Academy of Sciences, 110, 5840–5845.  https://doi.org/10.1073/pnas.1222607110.CrossRefGoogle Scholar
  15. Kleinstreuer, C., & Poweigha, T. (1982). Dynamic simulator for anaerobic digestion processes. Biotechnology and Bioengineering, 24, 1941–1951.  https://doi.org/10.1002/bit.260240903.CrossRefGoogle Scholar
  16. Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazábal, G. O., & Pérez-Ramírez, J. (2013). Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & Environmental Science, 6, 3112–3135.  https://doi.org/10.1039/C3EE41272E.CrossRefGoogle Scholar
  17. Küsel, K., Karnholz, A., Trinkwalter, T., Devereux, R., Acker, G., & Drake, H. L. (2001). Physiological ecology of Clostridium glycolicum RD-1, an Aerotolerant acetogen isolated from sea grass roots. Applied and Environment Microbiology, 67, 4734–4741.  https://doi.org/10.1128/AEM.67.10.4734-4741.2001.CrossRefGoogle Scholar
  18. Lee, Y. J., & Rochelle, G. T. (1987). Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: Products, kinetics, and mechanism. Environmental Science and Technology, 21, 266–272.  https://doi.org/10.1021/es00157a007.CrossRefGoogle Scholar
  19. Leistritz, F. L., Senechal, D. M., Stowers, M. D., McDonald, W. F., Saffron, C. M., & Hodur, N.M. (2006). Preliminary feasibility analysis for an integrated biomaterials and ethanol biorefinery using wheat straw feedstock (No. 23500). Agribusiness & Applied Economics Report. North Dakota State University, Department of Agribusiness and Applied Economics.Google Scholar
  20. Levenspiel, O. (1999). Chemical reaction engineering. New York, US: Wiley.Google Scholar
  21. Liou, J. S.-C., Balkwill, D. L., Drake, G. R., & Tanner, R. S. (2005). Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. International Journal of Systematic and Evolutionary Microbiology, 55, 2085–2091.  https://doi.org/10.1099/ijs.0.63482-0.CrossRefGoogle Scholar
  22. Lyberatos, G., & Skiadas, I. V. (1999). Modeling of anaerobic digestion—A review. Global NEST International Journal, 1, 63–76.Google Scholar
  23. Ma, L., Zhou, L., Ruan, M.-Y., Gu, J.-D., & Mu, B.-Z. (2019). Simultaneous methanogenesis and acetogenesis from the greenhouse carbon dioxide by an enrichment culture supplemented with zero-valent iron. Renewable Energy, 132, 861–870.  https://doi.org/10.1016/j.renene.2018.08.059.CrossRefGoogle Scholar
  24. Madigan, M. T., Martinko, J. M., Stahl, D. A., & Clark, D. P. (2010). Brock biology of microorganisms (13th ed.,). Benjamin Cummings.Google Scholar
  25. Moletta, R., Verrier, D., & Albagnac, G. (1986). Dynamic modelling of anaerobic digestion. Water Research, 20, 427–434.  https://doi.org/10.1016/0043-1354(86)90189-2.CrossRefGoogle Scholar
  26. Nelson, D. L., & Cox, M. M. (2012). Lehninger principles of biochemistry (6th ed.). W.H: Freeman.Google Scholar
  27. Ntaikou, I., Menis, N., Alexandropoulou, M., Antonopoulou, G., & Lyberatos, G. (2018). Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Bioresource Technology, 263, 75–83.  https://doi.org/10.1016/j.biortech.2018.04.109.CrossRefGoogle Scholar
  28. Oh, Y.-K., Seol, E.-H., Kim, J. R., & Park, S. (2003). Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. International Journal of Hydrogen Energy, 28, 1353–1359.  https://doi.org/10.1016/S0360-3199(03)00024-7.CrossRefGoogle Scholar
  29. Rasmussen, M., & Minteer, S. D. (2014). Photobioelectrochemistry: Solar Energy conversion and biofuel production with photosynthetic catalysts. Journal of the Electrochemical Society, 161, H647–H655.  https://doi.org/10.1149/2.0651410jes.CrossRefGoogle Scholar
  30. Sakai, S., Nakashimada, Y., Yoshimoto, H., Watanabe, S., Okada, H., & Nishio, N. (2004). Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22-1. Biotechnology Letters, 26, 1607–1612.  https://doi.org/10.1023/B:BILE.0000045661.03366.f2.CrossRefGoogle Scholar
  31. Siriwongrungson, V., Zeng, R. J., & Angelidaki, I. (2007). Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Water Research, 41, 4204–4210.  https://doi.org/10.1016/j.watres.2007.05.037.CrossRefGoogle Scholar
  32. Sokolova, T. G., González, J. M., Kostrikina, N. A., Chernyh, N. A., Slepova, T. V., Bonch-Osmolovskaya, E. A., et al. (2004a). Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. International Journal of Systematic and Evolutionary Microbiology, 54, 2353–2359.  https://doi.org/10.1099/ijs.0.63186-0.CrossRefGoogle Scholar
  33. Sokolova, T. G., Jeanthon, C., Kostrikina, N. A., Chernyh, N. A., Lebedinsky, A. V., Stackebrandt, E., et al. (2004b). The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent Extrem. Life Extreme Cond., 8, 317–323.  https://doi.org/10.1007/s00792-004-0389-0.CrossRefGoogle Scholar
  34. Sokolova, T. G., González, J. M., Kostrikina, N. A., Chernyh, N. A., Tourova, T. P., Kato, C., et al. (2001). Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. International Journal of Systematic and Evolutionary Microbiology, 51, 141–149.  https://doi.org/10.1099/00207713-51-1-141.CrossRefGoogle Scholar
  35. Sokolova, T., Hanel, J., Onyenwoke, R. U., Reysenbach, A.-L., Banta, A., Geyer, R., et al. (2007). Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov Extrem. Life Extreme Condition, 11, 145–157.  https://doi.org/10.1007/s00792-006-0022-5.CrossRefGoogle Scholar
  36. Sokolova, T. G., Kostrikina, N. A., Chernyh, N. A., Kolganova, T. V., Tourova, T. P., & Bonch-Osmolovskaya, E. A. (2005). Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. International Journal of Systematic and Evolutionary Microbiology, 55, 2069–2073.  https://doi.org/10.1099/ijs.0.63299-0.CrossRefGoogle Scholar
  37. Sokolova, T. G., Kostrikina, N. A., Chernyh, N. A., Tourova, T. P., Kolganova, T. V., & Bonch-Osmolovskaya, E. A. (2002). Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. International Journal of Systematic and Evolutionary Microbiology, 52, 1961–1967.  https://doi.org/10.1099/00207713-52-6-1961.CrossRefGoogle Scholar
  38. Stal, L. J., & Moezelaar, R. (1997). Fermentation in cyanobacteria. FEMS Microbiology Reviews, 21, 179–211.  https://doi.org/10.1016/S0168-6445(97)00056-9.CrossRefGoogle Scholar
  39. Tian, T., Qiao, S., Yu, C., Tian, Y., Yang, Y., & Zhou, J. (2017). Distinct and diverse anaerobic respiration of methanogenic community in response to MnO2 nanoparticles in anaerobic digester sludge. Water Research, 123, 206–215.  https://doi.org/10.1016/j.watres.2017.06.066.CrossRefGoogle Scholar
  40. Uffen, R. L. (1976). Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proceedings of the National Academy of Sciences of the United States of America, 73, 3298–3302.CrossRefGoogle Scholar
  41. van Dijken, J. P., & Scheffers, W. A. (1986). Redox balances in the metabolism of sugars by yeasts. FEMS Microbiology Letters, 32, 199–224.  https://doi.org/10.1111/j.1574-6968.1986.tb01194.x.CrossRefGoogle Scholar
  42. Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., et al. (1982). The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances. Journal of Physical and Chemical Reference Data.Google Scholar
  43. Wong, M. T., Cheng, D., Wang, R., & Hsing, I.-M. (2016). Modifying the endogenous electron fluxes of Rhodobacter sphaeroides 2.4.1 for improved electricity generation. Enyzme and Microbial Technology, 86, 45–51.  https://doi.org/10.1016/j.enzmictec.2016.01.009.CrossRefGoogle Scholar
  44. Zeikus, J. G., Lynd, L. H., Thompson, T. E., Krzycki, J. A., Weimer, P. J., & Hegge, P. W. (1980). Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the marburg strain. Current Microbiology, 3, 381–386.  https://doi.org/10.1007/BF02601907.CrossRefGoogle Scholar
  45. Zhao, T., Tashiro, Y., Zheng, J., Sakai, K., & Sonomoto, K. (2018). Semi-hydrolysis with low enzyme loading leads to highly effective butanol fermentation. Bioresource Technology, 264, 335–342.  https://doi.org/10.1016/j.biortech.2018.05.056.CrossRefGoogle Scholar
  46. Zürrer, H., & Bachofen, R. (1979). Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum. Applied and Environment Microbiology, 37, 789–793.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Energy Technology, Faculty of Science and EngineeringÅbo Akademi UniversityVaasaFinland

Personalised recommendations