Advertisement

Integrated Biorefinery Concepts

  • Cataldo De BlasioEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The concept of biorefinery is illustrated here with some industrial example involving the production of biodiesel. Some general cases are given in regard to the production of ethanol. This is an introductory chapter where the focus is concentrated on some of the biggest Finnish companies working in this field and on process integration of different systems provided.

References

  1. Al-attab, K. A., & Zainal, Z. A. (2018). Micro gas turbine running on naturally aspirated syngas: An experimental investigation. Renewable Energy, 119, 210–216.  https://doi.org/10.1016/j.renene.2017.12.008.CrossRefGoogle Scholar
  2. Balat, M., Balat, M., Kırtay, E., & Balat, H. (2009a). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion and Management, 50, 3147–3157.  https://doi.org/10.1016/j.enconman.2009.08.014.CrossRefGoogle Scholar
  3. Balat, M., Balat, M., Kırtay, E., & Balat, H. (2009b). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energy Conversion and Management, 50, 3158–3168.  https://doi.org/10.1016/j.enconman.2009.08.013.CrossRefGoogle Scholar
  4. Bezergianni, S. (2013). Catalytic hydroprocessing of liquid biomass for biofuels production. InTECH.Google Scholar
  5. Cerone, N., Zimbardi, F., Contuzzi, L., Prestipino, M., Carnevale, M. O., & Valerio, V. (2017). Air-steam and oxy-steam gasification of hydrolytic residues from biorefinery. Fuel Processing Technology, 167, 451–461.  https://doi.org/10.1016/j.fuproc.2017.07.027.CrossRefGoogle Scholar
  6. Chiodini, A., Bua, L., Carnelli, L., Zwart, R., Vreugdenhil, B., & Vocciante, M. (2017). Enhancements in Biomass-to-Liquid processes: Gasification aiming at high hydrogen/carbon monoxide ratios for direct Fischer-Tropsch synthesis applications. Biomass and Bioenergy, 106, 104–114.  https://doi.org/10.1016/j.biombioe.2017.08.022.CrossRefGoogle Scholar
  7. Chiodo, V., Urbani, F., Zafarana, G., Prestipino, M., Galvagno, A., & Maisano, S. (2017). Syngas production by catalytic steam gasification of citrus residues. International Journal of Hydrogen Energy; Advanced Materials for Fuel Cells and Electrolyzers: The E-MRS 2016 Fall Meeting Symposium Q (Vol. 42, pp. 28048–28055), September 19–22, 2016, Warsaw, Poland.  https://doi.org/10.1016/j.ijhydene.2017.08.085.CrossRefGoogle Scholar
  8. Choi, J.-H., Jang, S.-K., Kim, J.-H., Park, S.-Y., Kim, J.-C., Jeong, H., et al. (2019). Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment. Renewable Energy, 130, 952–960.  https://doi.org/10.1016/j.renene.2018.05.052.CrossRefGoogle Scholar
  9. Christensen, P. S., Peng, G., Vogel, F., & Iversen, B. B. (2014). Hydrothermal Liquefaction of the microalgae phaeodactylum tricornutum: Impact of reaction conditions on product and elemental distribution. Energy and Fuels, 28, 5792–5803.  https://doi.org/10.1021/ef5012808.CrossRefGoogle Scholar
  10. Coma, M., Martinez-Hernandez, E., Abeln, F., Raikova, S., Donnelly, J., …. Chuck, C. (2017). Organic waste as a sustainable feedstock for platform chemicals. Faraday Discuss, 202, 175–195.  https://doi.org/10.1039/C7FD00070G.CrossRefGoogle Scholar
  11. Croce, S., Wei, Q., D’Imporzano, G., Dong, R., & Adani, F. (2016). Anaerobic digestion of straw and corn stover: The effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnology Advances, 34, 1289–1304.  https://doi.org/10.1016/j.biotechadv.2016.09.004.CrossRefGoogle Scholar
  12. Engman, A., Hartikka, T., Honkanen, M., Kiiski, U., Kuronen, M., Lehto, K., et al. (2016). Neste renewable diesel handbook. Espoo: Neste Corp.Google Scholar
  13. Engström, J. (2017). Äänekoski a Mill for the 21th Century (No. 36), Spectrum. Andritz.Google Scholar
  14. Envor Protech OY. (2016). Envor Protech Oy is developing biogas technology to forest industry [WWW Document]. http://www.envorprotech.fi/en/?newspage=2. Accessed July 14,18.
  15. ePURE. (2018). Fuel blends | ePURE—European renewable ethanol [WWW Document]. https://epure.org/about-ethanol/fuel-market/fuel-blends/. Accessed July 14, 18.
  16. Gądek, W., Mlonka-Mędrala, M., Prestipino, M., Evangelopoulos, P., Kalisz, S., & Yang, W. (2016). Gasification and pyrolysis of different biomasses in lab scale system: A comparative study. E3S Web Conference, 10, 00024.  https://doi.org/10.1051/e3sconf/20161000024.CrossRefGoogle Scholar
  17. Galvagno, A., Prestipino, M., Chiodo, V., Maisano, S., Brusca, S., & Lanzafame, R. (2017). Energy performance of CHP system integrated with citrus peel air-steam gasification: A comparative study. In Energy Procedia, ATI 2017—72nd Conference of the Italian Thermal Machines Engineering Association (Vol. 126, pp. 485–492).  https://doi.org/10.1016/j.egypro.2017.08.233.CrossRefGoogle Scholar
  18. Galvagno, A., Prestipino, M., Zafarana, G., & Chiodo, V. (2016). Analysis of an integrated agro-waste gasification and 120 kW SOFC CHP system: modeling and experimental investigation. In Energy Procedia, ATI 2016—71st Conference of the Italian Thermal Machines Engineering Association (Vol. 101, pp. 528–535).  https://doi.org/10.1016/j.egypro.2016.11.067.CrossRefGoogle Scholar
  19. Helynen, S., Sipila, K., Peltola, E., & Holttinen, H. (2002). Renewable energy sources in Finland by 2030. Helsinki: Eduskunnan kanslia.Google Scholar
  20. Ishola, M. M., Brandberg, T., & Taherzadeh, M. J. (2015). Simultaneous glucose and xylose utilization for improved ethanol production from lignocellulosic biomass through SSFF with encapsulated yeast. Biomass and Bioenergy, 77, 192–199.  https://doi.org/10.1016/j.biombioe.2015.03.021.CrossRefGoogle Scholar
  21. Ishola, M. M., Jahandideh, A., Haidarian, B., Brandberg, T., & Taherzadeh, M. J. (2013). Simultaneous saccharification, filtration and fermentation (SSFF): A novel method for bioethanol production from lignocellulosic biomass. Bioresource Technology, 133, 68–73.  https://doi.org/10.1016/j.biortech.2013.01.130.CrossRefGoogle Scholar
  22. Kim, J. S., Lee, Y. Y., & Kim, T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42–48.  https://doi.org/10.1016/j.biortech.2015.08.085.CrossRefGoogle Scholar
  23. Kouisni, L., Gagné, A., Maki, K., Holt-Hindle, P., & Paleologou, M. (2016). Ligno force system for the recovery of lignin from black liquor: Feedstock options, odor profile, and product characterization. ACS Sustainable Chemistry and Engineering, 4, 5152–5159.  https://doi.org/10.1021/acssuschemeng.6b00907.CrossRefGoogle Scholar
  24. Kraussler, M., Binder, M., Schindler, P., & Hofbauer, H. (2018). Hydrogen production within a polygeneration concept based on dual fluidized bed biomass steam gasification. Biomass and Bioenergy, 111, 320–329.  https://doi.org/10.1016/j.biombioe.2016.12.008.CrossRefGoogle Scholar
  25. Kwak, S., Jo, J. H., Yun, E. J., Jin, Y. -S., & Seo, J. -H. (2018). Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnology Advances.  https://doi.org/10.1016/j.biotechadv.2018.12.003.CrossRefGoogle Scholar
  26. Li, M.-F., Yang, S., & Sun, R.-C. (2016). Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass. Bioresource Technology, 200, 971–980.  https://doi.org/10.1016/j.biortech.2015.10.004.CrossRefGoogle Scholar
  27. Muddassar, H. R., Melin, K., de Villalba Kokkonen, D., Riera, G. V., Golam, S., & Koskinen, J. (2015). Green chemicals from pulp production black liquor by partial wet oxidation. Waste Management and Research Journal of the International Solid Wastes Public Cleaning Association ISWA, 33, 1015–1021.  https://doi.org/10.1177/0734242X15602807.CrossRefGoogle Scholar
  28. Muddassar, H. R., Melin, K., & Koskinen, J. (2014). Production of carboxylic acids from alkaline pretreatment byproduct of softwood. Cellulose Chemistry and Technology, 48, 835–842.Google Scholar
  29. Nair, R. B., Lennartsson, P. R., & Taherzadeh, M. J. (2017). Bioethanol production from agricultural and municipal wastes. In: J. W. –C. Wong, R. D. Tyagi, A. Pandey (Eds.), Current developments in biotechnology and bioengineering (pp. 157–190). Elsevier.  https://doi.org/10.1016/B978-0-444-63664-5.00008-3.CrossRefGoogle Scholar
  30. Neste Oil. (2018). Neste oil’s nexbtl diesel.Google Scholar
  31. Ning, S., Jia, S., Ying, H., Sun, Y., Xu, W., & Yin, H. (2018). Hydrogen-rich syngas produced by catalytic steam gasification of corncob char. Biomass and Bioenergy, 117, 131–136.  https://doi.org/10.1016/j.biombioe.2018.07.003.CrossRefGoogle Scholar
  32. Nousiainen, I. (2018). Metsä Group’s bioproduct mill has produced more than 1 million tonnes of pulp, reaching its full production capacity [WWW Document]. https://www.metsagroup.com/en/media/all-news/Pages/News.aspx?EncryptedId=96853DAD830688F5&Title=MetsaGroupsbioproductmillhasproducedmorethan1milliontonnesofpulp,reachingitsfullproductioncapacity. Accessed January 6, 19.
  33. Özdenkçi, K., De Blasio, C., Muddassar, H. R., Melin, K., Oinas, P., Koskinen, J., et al. (2017). A novel biorefinery integration concept for lignocellulosic biomass. Energy Conversion and Management, 149, 974–987.  https://doi.org/10.1016/j.enconman.2017.04.034.CrossRefGoogle Scholar
  34. Özdenkci, K., Koskinen, J., & Sarwar, G. (2014). Recovery of sodium organic salts from partially wet oxidized black liquor. Cellulose Chemistry and Technology, 48, 825–833.Google Scholar
  35. Palomba, V., Prestipino, M., & Galvagno, A. (2017). Tri-generation for industrial applications: Development of a simulation model for a gasification-SOFC based system. International Journal of Hydrogen Energy; Advanced Materials for Fuel Cells and Electrolyzers: The E-MRS 2016 Fall Meeting Symposium Q (Vol. 42, pp. 27866–27883), September 19–22, 2016, Warsaw, Poland.  https://doi.org/10.1016/j.ijhydene.2017.06.206.CrossRefGoogle Scholar
  36. Pandey, A., Hofer, R., Larroche, C., Taherzadeh, M., & Nampoothiri, M. (2015). Industrial biorefineries and white biotechnology. Elsevier.Google Scholar
  37. Pérez, J. F., Melgar, A., & Benjumea, P. N. (2012). Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: An experimental study. Fuel, 96, 487–496.  https://doi.org/10.1016/j.fuel.2012.01.064.CrossRefGoogle Scholar
  38. Prestipino, M., Chiodo, V., Maisano, S., Zafarana, G., Urbani, F., & Galvagno, A. (2017). Hydrogen rich syngas production by air-steam gasification of citrus peel residues from citrus juice manufacturing: Experimental and simulation activities. International Journal of Hydrogen Energy, 42, 26816–26827.  https://doi.org/10.1016/j.ijhydene.2017.05.173.CrossRefGoogle Scholar
  39. Prestipino, M., Palomba, V., Vasta, S., Freni, A., & Galvagno, A. (2016). A Simulation tool to evaluate the feasibility of a gasification-I.C.E. System to produce heat and power for industrial applications. In Energy Procedia, ATI 2016—71st Conference of the Italian Thermal Machines Engineering Association (Vol. 101, pp. 1256–1263).  https://doi.org/10.1016/j.egypro.2016.11.141.CrossRefGoogle Scholar
  40. Ramos, L. P., Cordeiro, C. S., Cesar-Oliveira, M. A. F., Wypych, F., & Nakagaki, S. (2014). Applications of heterogeneous catalysts in the production of biodiesel by esterification and transesterification, Chap. 16. In Bioenergy research: Advances and applications (pp. 255–276). Elsevier, Amsterdam.Google Scholar
  41. Schreiber, M., Vivekanandhan, S., Cooke, P., Mohanty, A. K., & Misra, M. (2014). Electrospun green fibres from lignin and chitosan: a novel polycomplexation process for the production of lignin-based fibres. Journal Materials Science, 49, 7949–7958.  https://doi.org/10.1007/s10853-014-8481-z.CrossRefGoogle Scholar
  42. Sipponen, M. H., Özdenkci, K., Muddassar, H. R., Melin, K., Golam, S., & Oinas, P. (2016). Hydrothermal liquefaction of softwood: Selective chemical production under oxidative conditions. ACS Sustainable Chemistry and Engineering, 4, 3978–3984.  https://doi.org/10.1021/acssuschemeng.6b00846.CrossRefGoogle Scholar
  43. St1 Nordic Oy. (2018). St1 built a waste-based Etanolix® ethanol production plant in Gothenburg - St1 [WWW Document]. English. https://www.st1.eu/st1-built-a-waste-based-etanolix-ethanol-production-plant-in-gothenburg. Accessed July 14, 18.
  44. St1 Nordic Oy. (2010). st1 produces bioethanol from straw and cellulose. Focus on Catalysis, 4–5.  https://doi.org/10.1016/S1351-4180(10)70207-5.
  45. Svensson, E., Eriksson, K., & Wik, T. (2015). Reasons to apply operability analysis in the design of integrated biorefineries. Biofuels, Bioproducts and Biorefining, 9, 147–157.  https://doi.org/10.1002/bbb.1530.CrossRefGoogle Scholar
  46. Tekin, K., Karagöz, S., & Bektaş, S. (2014). A review of hydrothermal biomass processing. Renewable and Sustainable Energy Reviews, 40, 673–687.CrossRefGoogle Scholar
  47. Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36, 2328–2342.  https://doi.org/10.1016/j.energy.2011.03.013.CrossRefGoogle Scholar
  48. UPM-Kymmene. (2012). UPM-Kymmene annual report 2011: UPM will build the world’s first biorefinery producing wood-based biodiesel. Focus on Catalyst, 6.  https://doi.org/10.1016/S1351-4180(12)70177-0.
  49. Vásquez, M. C., Silva, E. E., & Castillo, E. F. (2017). Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production. Biomass and Bioenergy, 105, 197–206.  https://doi.org/10.1016/j.biombioe.2017.07.008.CrossRefGoogle Scholar
  50. Vauhkonen, V. (2015). Renewable diesel from tall oil. UPM The Biofore Company.Google Scholar
  51. von Weymarn, N. (2016). Metsä group’s bioproduct mill: A next generation wood biorefinery in Äänekoski. Metsä Fibre: Finland.Google Scholar
  52. Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2, 51–68.  https://doi.org/10.25165/ijabe.v2i3.168.
  53. Zhu, Y., Biddy, M. J., Jones, S. B., Elliott, D. C., & Schmidt, A. J. (2014). Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading. Applied Energy, 129, 384–394.  https://doi.org/10.1016/j.apenergy.2014.03.053.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Energy Technology, Faculty of Science and EngineeringÅbo Akademi UniversityVaasaFinland

Personalised recommendations