• Cataldo De BlasioEmail author
Part of the Green Energy and Technology book series (GREEN)


The ever-increasing global energy demand and the risks we face in terms of global warming and pollution suggest the need of alternative sources for energy and fuels. Liquid and gaseous fuels derived from biomass represent a promising alternative in this sense. Biofuels demonstrate positive qualities respect to other fuels types; they can be transported easily and show good calorific properties. Particularly, liquid fuels are very convenient for the human need since they store a reasonable amount of energy in very little volume, and they can be transported easily. Studies have been conducted by several organizations concerning biomass supply and its usage in energy conversion, and they are reported in this section.


  1. Bacastow, R. B., Keeling, C. D., & Whorf, T. P. (1985). Seasonal amplitude increase in atmospheric CO2 concentration at Mauna Loa, Hawaii, 1959–1982. Journal of Geophysical Research: Atmospheres, 90(D6), 10529–10540. Scholar
  2. Battjes, J. J. (1994). Global options for biofuels from plantations according to IMAGE simulations (No. IVEM-SR-77). Rijksuniversiteit Groningen (Netherlands). Interfacultaire Vakgroep Energie en Milieukunde. Retrieved from
  3. Box, E. O. (1988). Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere. Journal of Applied Meteorology, 27(10), 1109–1124.;2.CrossRefGoogle Scholar
  4. Breure, A. M., Lijzen, J. P. A., & Maring, L. (2018). Soil and land management in a circular economy. Science of the Total Environment, 624, 1125–1130. Scholar
  5. Campbell, C. J., & Laherrere, J. (1998). The end of cheap oil. Scientific American, 278(3). Retrieved from
  6. D’Arrigo, R., Jacoby, G. C., & Fung, I. Y. (1987). Boreal forests and atmosphere–biosphere exchange of carbon dioxide. Nature, 329(6137), 321–323. Scholar
  7. De Blasio, C., Ahlbeck, J., & Westerlund, T. (2009). Modeling the hydrodynamics and mass-transfer phenomena for sedimentary rocks used for flue gas desulfurization. The effect of temperature. In R. M. de Brito Alves, C. A. O. do Nascimento, & E. C. Biscaia (Eds.), Computer aided chemical engineering (Vol. 27, pp. 411–416). Elsevier. Scholar
  8. De Blasio, C., Carletti, C., Westerlund, T., & Järvinen, M. (2013). On modeling the dissolution of sedimentary rocks in acidic environments. An overview of selected mathematical methods with presentation of a case study. Journal of Mathematical Chemistry, 51(8), 2120–2143. Scholar
  9. Dessus, B., Devin, B., & Pharabod, F. (1992). World potential of renewable energies actually accessible in the nineties and environmental impacts analysis. Houille Blanche, 47(1), 21–70.CrossRefGoogle Scholar
  10. Edmonds, J. A., Wise, M. A., Sands, R., Brown, R., & Kheshgi, H. (2003). Agriculture, land use, and commercial biomass energy: A preliminary integrated analysis of the potential role of biomass energy for reducing future greenhouse related emissions. In Proceedings of the 6th Greenhouse Gas Control Technologies Conference (pp. 0-08-044045–2). Oxford UK: Elsevier Inc.Google Scholar
  11. Fischer, G., & Schrattenholzer, L. (2001). Global bioenergy potentials through 2050. Biomass and Bioenergy, 20(3), 151–159. Scholar
  12. Fung, I. Y., Tucker, C. J., & Prentice, K. C. (1987). Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2. Journal of Geophysical Research: Atmospheres, 92(D3), 2999–3015. Scholar
  13. Grubler, A., Jefferson, M., & Nakicenovic, N. (1996). Global energy perspectives: A summary of the joint study by IIASA and world energy council (Monograph). Retrieved July 9, 2018, from
  14. Hall, D. O. (1993). Biomass for energy: Supply prospects. In Renewable energy: Sources for fuels and electricity (pp. 593–651). Washington D.C.: Island Press.Google Scholar
  15. Houghton, R. A., & Woodwell, G. M. (1989). Global climatic change. Scientific American, 260(4), 36–47.CrossRefGoogle Scholar
  16. Johansson, T. B. (1993). A renewables-intensive global energy scenario. In Renewable energy: Sources for fuels and electricity (pp. 1071–1143). Washington D.C.: Island Press.Google Scholar
  17. Lashof, D. A., & Tirpak, D. A. (1990). Policy options for stabilizing global climate. U.S.: Environmental Protection Agency.Google Scholar
  18. Lazarus, M., Greber, L., Hall, J., Bartels, C., Bernow, S., Hansen, E., … Von Hippel, D. (1993). Towards a fossil free energy future. The next energy transition. Stockholm Environment Institute Boston Center.Google Scholar
  19. Leemans, R., van Amstel, A., Battjes, C., Kreileman, E., & Toet, S. (1996). The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source. Global Environmental Change, 6(4), 335–357. Scholar
  20. Mascarelli, A. L. (2009). Gold rush for algae. Nature, 461(7263), 460–461. Scholar
  21. Millero, F. J. (1979). The thermodynamics of the carbonate system in seawater. Geochimica et Cosmochimica Acta, 43(10), 1651–1661. Scholar
  22. Nakicenovic, N., & Riahi, K. (2001). An assessment of technological change across selected energy scenarios (Monograph). Retrieved July 9, 2018, from
  23. Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R. A., Rogner, H.-H., & Victor, N. (2000). Special report on emissions scenarios (SRES), a special report of working group III of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. Retrieved from
  24. Schulze, E.-D., Körner, C., Law, B. E., Haberl, H., & Luyssaert, S. (2012). Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy, 4, 611–616. Scholar
  25. Shell. (1995). Evolution of the world’s energy system 1860–2060. London: Shell Center.Google Scholar
  26. Sillén, L. G., & Martell, A. E. (1965). Stability constants of metal-ion complexes (Sillen, Lars Gunnar; Martell, Arthur E.). Journal of Chemical Education, 42(9), 521. Scholar
  27. Soerensen, B., Meibom, P., & Kuemmel, B. (1999). Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final Report (No. IMFUFA-TEKST--359). Roskilde Universitetscenter (Denmark): Inst. for Studiet af Matematik og Fysik samt deres Funktioner i Undervisning. Retrieved from
  28. Statista. (2018). World—Total population 2007–2017 | statistic. Retrieved December 31, 2018, from
  29. Swisher, J. (1993). Renewable energy potentials, Chap. 3. Energy, 18(5), 437–459.
  30. Thomas, W. H., Seibert, D. L. R., Alden, M., Neori, A., & Eldridge, P. (1984). Yields, photosynthetic efficiencies and proximate composition of dense marine microalgal cultures. I. Introduction and Phaeodactylum tricornutum experiments. Biomass, 5(3), 181–209. Scholar
  31. U.S. Energy Information Administration. (2013). International energy outlook 2013. Retrieved from
  32. Williams, R. H. (1995). Variants of a low CO2-emitting energy supply system (LESS) for the world. Prepared for the IPCC Second Assessment Report Working Group IIa, Energy Supply Mitigation Options.Google Scholar
  33. World Energy Council. (1994). New renewable energy resources. Kogan Page Ltd.Google Scholar
  34. Yamamoto, H., Yamaji, K., & Fujino, J. (1999). Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique. Applied Energy, 63(2), 101–113. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Energy Technology, Faculty of Science and EngineeringÅbo Akademi UniversityVaasaFinland

Personalised recommendations