Advertisement

Tethered Lipid Membranes as Platforms for Biophysical Studies and Advanced Biosensors

  • Jakob Andersson
  • Wolfgang KnollEmail author
Chapter

Abstract

The cellular membrane is a highly complex and sophisticated biological architecture that hosts a vast repertoire of biological machinery. This machinery is essential for many vital processes, from nutrient import to cell-cell communication and sensory detection including touch, taste, smell, vision and auditory signals. Therefore, the cellular membrane hosts a vast number of receptors that are highly specific for signaling molecules, hormones and receptors that detect various elements in the cellular surrounding that affect the functioning of the cell [1].

Keywords

Tethered lipid membranes Biosensors Functionalised membranes Model lipid platforms for sensing 

Bibliography

  1. 1.
    G. Várady, J. Cserepes, A. Németh, E. Szabó, B. Sarkadi, Cell surface membrane proteins as personalized biomarkers: Where we stand and where we are headed. Biomark. Med 7, 803–819 (2013)CrossRefGoogle Scholar
  2. 2.
    J. Andersson, J.J. Knobloch, M.V. Perkins, S.A. Holt, I. Köper, Synthesis and characterization of novel anchorlipids for tethered bilayer lipid membranes. Langmuir 33, 4444–4451 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Andersson, I. Köper, W. Knoll, Tethered membrane architectures—Design and applications. Front. Mater. 5, 55 (2018)CrossRefGoogle Scholar
  4. 4.
    L.A. Clifton et al., Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. Langmuir 31, 404–412 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Rang et al., Real-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels. Nat. Commun. 7, 12789 (2016)CrossRefGoogle Scholar
  6. 6.
    J. Andersson, I. Köper, Tethered and polymer supported bilayer lipid membranes: Structure and function. Membranes (Basel). 6, 30 (2016)CrossRefGoogle Scholar
  7. 7.
    M.L. Wagner, L.K. Tamm, Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: Silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys. J. 79, 1400–1414 (2000)CrossRefGoogle Scholar
  8. 8.
    J. Andersson, I. Köper, Biomimetic membranes, in Reference Module in Materials Science and Materials Engineering, (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-803581-8.10447-3
  9. 9.
    B.A. Cornell et al., A biosensor that uses ion-channel switches. Nature (Lond.) 387, 580–582 (1997)CrossRefGoogle Scholar
  10. 10.
    I.K. Vockenroth et al., Stable insulating tethered bilayer lipid membranes. Biointerphases 3, FA68–FA73 (2008)CrossRefGoogle Scholar
  11. 11.
    A. Junghans, I. Koper, Structural analysis of tethered bilayer lipid membranes. Langmuir 26, 11035–11040 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Andersson et al., Synthesis and Characterization of Novel Anchorlipids for Tethered Bilayer Lipid Membranes. Langmuir. 33(18), 4444–4451 (2017)Google Scholar
  13. 13.
    I.K. Vockenroth, D. Fine, A. Dodobalapur, A.T.A. Jenkins, I. Köper, Tethered bilayer lipid membranes with giga-ohm resistances. Electrochem. Commun. 10, 323–328 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Andersson, M.A. Fuller, K. Wood, S.A. Holt, I. Köper, A tethered bilayer lipid membrane that mimics microbial membranes. Phys. Chem. Chem. Phys. 20, 12958–12969 (2018)CrossRefGoogle Scholar
  15. 15.
    V. Atanasov et al., Membrane on a chip: A functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophys. J. 89, 1780–1788 (2005)CrossRefGoogle Scholar
  16. 16.
    R.F. Roskamp, I.K. Vockenroth, N. Eisenmenger, J. Braunagel, I. Koeper, Functional tethered bilayer lipid membranes on aluminum oxide. Chem. Phys. Chem. 9, 1920–1924 (2008)CrossRefGoogle Scholar
  17. 17.
    M.R. Moncelli, L. Becucci, S.M. Schiller, Tethered bilayer lipid membranes self-assembled on mercury electrodes. Bioelectrochemistry 63, 161–167 (2004)CrossRefGoogle Scholar
  18. 18.
    P. Jing, H. Paraiso, B. Burris, Highly efficient integration of the viral portal proteins from different types of phages into planar bilayers for the black lipid membrane analysis. Mol. BioSyst. 12, 480–489 (2016)CrossRefGoogle Scholar
  19. 19.
    G. Valincius et al., Soluble amyloid beta-oligomers affect dielectric membrane properties by bilayer insertion and domain formation: Implications for cell toxicity. Biophys. J. 95, 4845–4861 (2008)CrossRefGoogle Scholar
  20. 20.
    S.A.K. Datta et al., HIV-1 Gag extension: Conformational changes require simultaneous interaction with membrane and nucleic acid. J. Mol. Biol. 406, 205–214 (2011)CrossRefGoogle Scholar
  21. 21.
    J.J. Knobloch, A.R.J. Nelson, I. Köper, M. James, D.J. McGillivray, Oxidative damage to biomimetic membrane systems: In situ Fe(II)/ascorbate initiated oxidation and incorporation of synthetic oxidized phospholipids. Langmuir 31, 12679–12687 (2015)CrossRefGoogle Scholar
  22. 22.
    J.L. Zieleniecki et al., Cell-free synthesis of a functional membrane transporter into a tethered bilayer lipid membrane. Langmuir 32, 2445–2449 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Coutable et al., Preparation of tethered-lipid bilayers on gold surfaces for the incorporation of integral membrane proteins synthesized by cell-free expression. Langmuir 30, 3132–3141 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Leitch et al., In situ PM-IRRAS studies of an archaea analogue thiolipid assembled on a Au(111) electrode surface. Langmuir 25, 10354–10363 (2009)CrossRefGoogle Scholar
  25. 25.
    I. Koper, Insulating tethered bilayer lipid membranes to study membrane proteins. Mol. BioSyst. 3, 651–657 (2007)CrossRefGoogle Scholar
  26. 26.
    C. Rossi, J. Chopineau, Biomimetic tethered lipid membranes designed for membrane-protein interaction studies. Eur. Biophys. J. 36, 955–965 (2007)CrossRefGoogle Scholar
  27. 27.
    F. Giess, M.G. Friedrich, J. Heberle, R.L. Naumann, W. Knoll, The protein-tethered lipid bilayer: A novel mimic of the biological membrane. Biophys. J. 87, 3213–3220 (2004)CrossRefGoogle Scholar
  28. 28.
    N. Vogel, J. Zieleniecki, I. Köper, As flat as it gets: Ultrasmooth surfaces from template-stripping procedures. Nanoscale 4, 3820–3832 (2012)CrossRefGoogle Scholar
  29. 29.
    P. Yin, C.J. Burns, P.D.J. Osman, B.A. Cornell, A tethered bilayer sensor containing alamethicin channels and its detection of amiloride based inhibitors. Biosens. Bioelectron. 18, 389–397 (2003)CrossRefGoogle Scholar
  30. 30.
    B. Raguse et al., Tethered lipid bilayer membranes: Formation and ionic reservoir characterization. Langmuir 14, 648–659 (1998)CrossRefGoogle Scholar
  31. 31.
    M. Andersson et al., Detection of single ion channel activity on a chip using tethered bilayer membranes. Langmuir 23, 2924–2927 (2007)CrossRefGoogle Scholar
  32. 32.
    M. Uto, E.K. Michaelis, F. Hu, Y. Umezawa, T. Kuwana, Biosensor development with a glutamate receptor ion-channel reconstituted in a lipid bilayer. Anal. Sci. 6, 221–225 (1990)CrossRefGoogle Scholar
  33. 33.
    D. Ivnitski, E. Wilkins, H.T. Tien, A. Ottova, Electrochemical biosensor based on supported planar lipid bilayers for fast detection of pathogenic bacteria. Electrochem. Commun. 2, 457–460 (2000)CrossRefGoogle Scholar
  34. 34.
    Z. Wu et al., A facile approach to immobilize protein for biosensor: Self-assembled supported bilayer lipid membranes on glassy carbon electrode. Biosens. Bioelectron. 16, 47–52 (2001)CrossRefGoogle Scholar
  35. 35.
    T. Yamashita, Toward rational antibody design: Recent advancements in molecular dynamics simulations. Int. Immunol. 30, 133–140 (2018)CrossRefGoogle Scholar
  36. 36.
    V. Silin et al., Biochip for the detection of Bacillus anthracis lethal factor and therapeutic agents against anthrax toxins. Membranes. 6(3), p. 36 (2016)Google Scholar
  37. 37.
    W. Zhou, P.J. Burke, Versatile bottom-up synthesis of tethered bilayer lipid membranes on nanoelectronic biosensor devices. ACS Appl. Mater. Interfaces 9, 14618–14632 (2017)CrossRefGoogle Scholar
  38. 38.
    T.H. Kim et al., Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv. Mater. 21, 91–94 (2009)CrossRefGoogle Scholar
  39. 39.
    J.R. Burns, E. Stulz, S. Howorka, Self-assembled DNA nanopores that span lipid bilayers. Nano Lett. 13, 2351–2356 (2013)CrossRefGoogle Scholar
  40. 40.
    J.R. Burns, A. Seifert, N. Fertig, S. Howorka, A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol. 11, 152 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.AIT Austrian Institute of Technology GmBHViennaAustria

Personalised recommendations