Advertisement

Molecular Dynamics Studies of Nanoparticle Transport Through Model Lipid Membranes

  • Cynthia J. Jameson
  • Priyanka Oroskar
  • Bo Song
  • Huajun Yuan
  • Sohail MuradEmail author
Chapter

Abstract

Transport of materials through cell membranes is of significant interest. We consider specifically the transport of gold nanoparticles that are in current use for delivery of pharmaceuticals, photothermal therapy, as contrast agents for imaging, and for targeted cancer therapy. We use coarse-grained molecular dynamics simulations to “observe” details of interactions between nanoparticles and a lipid bilayer model membrane during the permeation process. The nanoparticles are characterized at the molecular level (distributions of ligand configurations, their dependence on ligand length and surface coverage). Observation of membrane properties that agree with experimental values validates the simulations. We investigate the mechanisms of permeation of a gold nanoparticle, with either hydrophobic (alkane-thiols) or hydrophilic (PEG (polyethyleneglycol)) ligands attached via a sulfur covalent linkage to spherical (or nanorod) gold cores, and their dependence on surface coverage, ligand length, core diameter, and core shape. Lipid response such as lipid flip-flops, lipid extraction, changes in order parameter of the lipid tails are examined in detail. The mechanism of permeation of a PEGylated nanorod is shown to occur by tilting, lying down, rotating, and straightening up. Information provided by molecular dynamics simulations helps to understand why some systems work better than others, and aids design of new ones.

Keywords

Molecular dynamics Gold nanoparticles Gold nanorod Lipid membranes Permeation 

Notes

Acknowledgments

The research described here has been funded by a grant from the National Science Foundation (Grant No. CBET-0730026/1263107/1545560) and the Department of Energy, Office of Basic Energy Science grant [Grant No. DE-FG02-08ER46538].

References

  1. 1.
    W.K. Subczynski, A. Kusumi, Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labelling and single molecule optical microscopy. Biochim. Biophys. Acta 1610, 231–243 (2003). https://doi.org/10.1016/S0005-2736(03)00021-X CrossRefGoogle Scholar
  2. 2.
    M.J. Swamy, L. Ciani, M. Ge, A.K. Smith, D. Holowka, B. Baird, J.H. Freed, Coexisting domains in the plasma membrane of live cells characterized by spin-label ESR spectroscopy. Biophys. J. 90, 4452–4465 (2006). https://doi.org/10.1529/biophysj.105.070839 CrossRefGoogle Scholar
  3. 3.
    A. Rietveld, K. Simons, The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim. Biophys. Acta 1376, 467–479 (1998). https://doi.org/10.1016/S0304-4157(98)00019-7 CrossRefGoogle Scholar
  4. 4.
    K. Simons, E. Ikonen, Functional rafts in cell membranes. Nature 397, 569–572 (1997). https://doi.org/10.1038/42408 CrossRefGoogle Scholar
  5. 5.
    D. Lingwood, K. Simons, Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2009). https://doi.org/10.1126/science.1174621 CrossRefGoogle Scholar
  6. 6.
    E. Sezgin, I. Levental, S. Mayor, C. Eggeling, The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361–374 (2017). https://doi.org/10.1038/nrm.2017.16 CrossRefGoogle Scholar
  7. 7.
    N. Komura, K.G. Suzuki, H. Ando, M. Konishi, M. Koikeda, A. Imamura, R. Chadda, T.K. Fujiwara, H. Tsuboi, R. Sheng, W. Cho, K. Furukawa, K. Furukawa, Y. Yamauchi, H. Ishida, A. Kusumi, M. Kiso, Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat. Chem. Biol. 12, 402–410 (2016). https://doi.org/10.1038/nchembio.2059 CrossRefGoogle Scholar
  8. 8.
    B.J. Lin, S.H. Tsao, A. Chen, S.K. Hu, L. Chao, P.H.G. Chao, Lipid rafts sense and direct electric field-induced migration. Proc. Natl. Acad. Sci. U. S. A. 114, 8568–8573 (2017). https://doi.org/10.1073/pnas.1702526114 CrossRefGoogle Scholar
  9. 9.
    H. Watson, Biological membranes. Essays Biochem. 59, 43–69 (2015). https://doi.org/10.1042/bse0590043 CrossRefGoogle Scholar
  10. 10.
    A. Alessandrini, P. Facci, Nanoscale mechanical properties of lipid bilayers and their relevance in biomembrane organization and function. Micron 43, 1212–1223 (2012). https://doi.org/10.1016/j.micron.2012.03.013 CrossRefGoogle Scholar
  11. 11.
    H.J. Yuan, C.J. Jameson, S. Murad, Diffusion of gases across lipid membranes with OmpA channel: a molecular dynamics study. Mol. Phys. 108, 1569–1581 (2010). https://doi.org/10.1080/00268976.2010.484396 CrossRefGoogle Scholar
  12. 12.
    J.F. Nagle, S. Tristram-Nagle, Structure of lipid bilayers. Biochim. Biophys. Acta 1469, 159–195 (2000). https://doi.org/10.1016/S0304-4157(00)00016-2 CrossRefGoogle Scholar
  13. 13.
    J.F. Nagle, R. Zhang, S. Tristram-Nagle, W.S. Sun, H.I. Petrache, R.M. Suter, X-ray structure determination of fully hydrated Lα phase dipalmitoylphosphatidylcholine bilayers. Biophys. J. 70, 1419–1431 (1996). https://doi.org/10.1016/S0006-3495(96)79701-1 CrossRefGoogle Scholar
  14. 14.
    H.J. Yuan, C.J. Jameson, S. Murad, Exploring gas permeability of lipid membranes using coarse-grained molecular dynamics. Mol. Simul. 35, 953–961 (2009). https://doi.org/10.1080/08927020902763839 CrossRefGoogle Scholar
  15. 15.
    B. Song, H.J. Yuan, C.J. Jameson, S. Murad, Permeation of nanocrystals across lipid membranes. Mol. Phys. 109, 1511–1526 (2011). https://doi.org/10.1080/00268976.2011.569511 CrossRefGoogle Scholar
  16. 16.
    J.P. Douliez, A. Leonard, E.J. Dufourc, Restatement of order parameters in biomemebranes - calculation of C-C bond order parameters from C-D quadrupolar splittings. Biophys. J. 68, 1727–1739 (1995). https://doi.org/10.1016/S0006-3495(95)80350-4 CrossRefGoogle Scholar
  17. 17.
    P.A. Oroskar, C.J. Jameson, S. Murad, Molecular-level “observations” of the behavior of gold nanoparticles in aqueous solution and interacting with a lipid bilayer membrane, in Preparation and Characterization of Specific Nanopharmaceuticals. Methods in Molecular Biology: Pharmaceutical Nanotechnology, ed. by J. M. Walker (Ed), vol. 2, (Springer Science, Heidelberg, 2018)Google Scholar
  18. 18.
    T. Hianik, M. Haburcák, K. Lohner, E. Prenner, F. Paltauf, A. Hermetter, Compressibility and density of lipid bilayers composed of polyunsaturated phospholipids and cholesterol. Colloids Surf. A Physicochem. Eng. Asp. 139, 189–197 (1998)CrossRefGoogle Scholar
  19. 19.
    S.F. Scarlata, Compression of lipid membranes as observed at varying membrane positions. Biophys. J. 60, 334–340 (1991). https://doi.org/10.1016/S0006-3495(91)82058-6; CrossRefGoogle Scholar
  20. 20.
    P.T.T. Wong, H.H. Mantsch, Reorientational and conformational ordering processes at elevated pressures in 1,2-dioleoyl phosphatidylcholine: a Raman and infrared spectroscopic study. Biophys. J. 54, 781–790 (1988). https://doi.org/10.1016/S0006-3495(88)83016-9 CrossRefGoogle Scholar
  21. 21.
    W.K. Subczynski, L.E. Hopwood, J.S. Hyde, Is the mammalian cell plasma membrane a barrier to oxygen transport? J. Gen. Physiol. 100, 69–87 (1992). 1324973CrossRefGoogle Scholar
  22. 22.
    M.S. Bretscher, Membrane structure: some general principles. Science 181, 622–629 (1973). https://doi.org/10.1126/science.181.4100.622 CrossRefGoogle Scholar
  23. 23.
    J.A.F. Op den Kamp, Lipid asymmetry in membranes. Annu. Rev. Biochem. 48, 47–71 (1979). https://doi.org/10.1146/annurev.bi.48.070179.000403 CrossRefGoogle Scholar
  24. 24.
    J.E. Rothman, J. Lenard, Membrane asymmetry. Science 195, 743–753 (1977). https://doi.org/10.1126/science.402030 CrossRefGoogle Scholar
  25. 25.
    G. van Meer, Dynamic transbilayer lipid asymmetry. Cold Spring Harb. Perspect. Biol. 3, a004671 (2011). https://doi.org/10.1101/cshperspect.a004671 CrossRefGoogle Scholar
  26. 26.
    S. Manno, Y. Takakuwa, N. Mohandas, Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine-skeletal protein interactions modulate membrane stability. Proc. Natl. Acad. Sci. U. S. A. 99, 1943–1948 (2002). https://doi.org/10.1073/pnas.042688399 CrossRefGoogle Scholar
  27. 27.
    J. Zimmerberg, L. Chernomordik, Membrane fusion. Adv. Drug Deliv. Rev. 38, 197–205 (1999). https://doi.org/10.1016/S0169-409X(99)00029-0 CrossRefGoogle Scholar
  28. 28.
    S. McLaughlin, The electrostatic properties of membranes. Annu. Rev. Biophys. Biophys. Chem. 18, 113–136 (1989). https://doi.org/10.1146/annurev.bb.18.060189.000553 CrossRefGoogle Scholar
  29. 29.
    A.A. Gurtovenko, I. Vattulainen, Lipid transmembrane asymmetry and intrinsic membrane potential: two sides of the same coin. J. Am. Chem. Soc. 129, 5358–5359 (2007). https://doi.org/10.1021/ja070949m CrossRefGoogle Scholar
  30. 30.
    A.A. Gurtovenko, I. Vattulainen, Membrane potential and electrostatics of phospholipid bilayers with asymmetric transmembrane distribution of anionic lipids. J. Phys. Chem. B 112, 4629–4634 (2008). https://doi.org/10.1021/jp8001993 CrossRefGoogle Scholar
  31. 31.
    A.A. Gurtovenko, I. Vattulainen, Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution. J. Phys. Chem. B 113, 7194–7198 (2009). https://doi.org/10.1021/jp902794q CrossRefGoogle Scholar
  32. 32.
    B. Song, H.J. Yuan, S.V. Pham, C.J. Jameson, S. Murad, Nanoparticle permeation induces water penetration, ion transport and lipid flip-flop. Langmuir 28, 16989–17000 (2012). https://doi.org/10.1021/la302879r CrossRefGoogle Scholar
  33. 33.
    P.A. Oroskar, C.J. Jameson, S. Murad, Surface-functionalized nanoparticle permeation triggers lipid displacement and water and ion leakage. Langmuir 31, 1074–1085 (2018). https://doi.org/10.1021/la503934c CrossRefGoogle Scholar
  34. 34.
    P.A. Oroskar, C.J. Jameson, S. Murad, Simulated permeation and characterization of PEGylated gold nanoparticles in a lipid bilayer system. Langmuir 32, 7541–7555 (2016). https://doi.org/10.1021/acs.langmuir.6b01740 CrossRefGoogle Scholar
  35. 35.
    A. Rousselet, C. Guthmann, J. Matricon, A. Bienvenue, P.F. Devaux, Study of the transverse diffusion of spin labelled phospholipids in biological membranes. I. Human red blood cells. Biochim. Biophys. Acta 426, 357–371 (1976). https://doi.org/10.1016/0005-2736(76)90382-5 CrossRefGoogle Scholar
  36. 36.
    U. Marx, G. Lassmann, K. Wimalasena, P. Miller, A. Herrmann, Rapid kinetics of insertion and accessibility of spin-labeled phospholipid analogs in lipid membranes: a stopped-flow electron paramagnetic resonance approach. Biophys. J. 73, 1645–1654 (1997). https://doi.org/10.1016/S0006-3495(97)78196-7 CrossRefGoogle Scholar
  37. 37.
    D.A. Brown, E. London, Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114 (1998). PMID: 9662555CrossRefGoogle Scholar
  38. 38.
    D.A. Brown, E. London, Function of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998). https://doi.org/10.1146/annurev.cellbio.14.1.111 CrossRefGoogle Scholar
  39. 39.
    K. Simons, D. Toomre, Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–41 (2000). https://doi.org/10.1038/35036052 CrossRefGoogle Scholar
  40. 40.
    M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004). https://doi.org/10.1021/cr030698+ CrossRefGoogle Scholar
  41. 41.
    E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–1782 (2009). https://doi.org/10.1039/b806051g CrossRefGoogle Scholar
  42. 42.
    P.K. Jain, X.H. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008). https://doi.org/10.1021/ar7002804 CrossRefGoogle Scholar
  43. 43.
    R.A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, W.J. Parak, Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896–1908 (2008). https://doi.org/10.1039/b712170a CrossRefGoogle Scholar
  44. 44.
    P. Ghosh, G. Han, M. De, C.K. Kim, V.M. Rotello, Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315 (2008). https://doi.org/10.1016/j.addr.2008.03.016 CrossRefGoogle Scholar
  45. 45.
    N. Elahi, M. Kamali, M.H. Baghersad, Recent biomedical applications of gold nanoparticles: a review. Talanta 184, 537–556 (2018). https://doi.org/10.1016/j.talanta.2018.02.088 CrossRefGoogle Scholar
  46. 46.
    L. Dykman, N. Khlebtsov, Gold Nanoparticles in Biomedical Applications (CRC Press, 2017). where? ISBN 9781138560741Google Scholar
  47. 47.
    E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–327 (2005). https://doi.org/10.1002/smll.200400093 CrossRefGoogle Scholar
  48. 48.
    A.G. Skirtach, A.M. Javier, O. Kreft, K. Kohler, A.P. Alberola, H. Mohwald, J. Parak, G.B. Sukhorukov, Laser-induced release of encapsulated materials inside living cells. Angew. Chem. Int. Ed. 45, 4612–4617 (2006). https://doi.org/10.1002/anie.200504599 CrossRefGoogle Scholar
  49. 49.
    A.M. Alkilany, L.B. Thompson, S.P. Boulos, P.N. Sisco, C.J. Murphy, Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev. 64(2), 190–199 (2012). https://doi.org/10.1016/j.addr.2011.03.005 CrossRefGoogle Scholar
  50. 50.
    A.F. Bagley, S. Hill, G.S. Rogers, S.N. Bhatia, Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 7, 8089–8097 (2013). https://doi.org/10.1021/nn4033757 CrossRefGoogle Scholar
  51. 51.
    X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008). https://doi.org/10.1007/s10103-007-0470-x CrossRefGoogle Scholar
  52. 52.
    L.C. Kennedy, L.R. Bickford, N.A. Lewinski, A.J. Coughlin, Y. Hu, E.S. Day, J.L. West, R.A. Drezek, A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7, 169–183 (2011). https://doi.org/10.1002/smll.201000134 CrossRefGoogle Scholar
  53. 53.
    H.N. McQuaid, M.F. Muir, L.E. Taggart, S.J. McMahon, J.A. Coulter, W.B. Hyland, S. Jain, K.T. Butterworth, G. Schettino, K.M. Prise, D.G. Hirst, S.W. Botchway, F.J. Currell, Imaging and radiation effects of gold nanoparticles in tumour cells. Sci. Rep. 6, 19442 (2016). https://doi.org/10.1038/srep19442 CrossRefGoogle Scholar
  54. 54.
    W. Cai, T. Gao, H. Hong, J. Sun, Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Applic 1, 17–32 (2008). https://doi.org/10.2147/NSA.S3788 CrossRefGoogle Scholar
  55. 55.
    I.H. El-Sayed, X.H. Huang, M. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5, 829–834 (2005). https://doi.org/10.1021/nl050074e CrossRefGoogle Scholar
  56. 56.
    C.J. Huang, Y. Zhang, H.Y. Yuan, H.J. Gao, S.L. Zhang, Role of nanoparticle geometry in endocytosis: laying down to stand up. Nano Lett. 13, 4546–4550 (2013). https://doi.org/10.1021/nl402628n CrossRefGoogle Scholar
  57. 57.
    R. Vacha, F.J. Martinez-Veracoechea, D. Frenkel, Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett. 11, 5391–5395 (2011). https://doi.org/10.1021/nl2030213 CrossRefGoogle Scholar
  58. 58.
    X. Shi, A. von dem Bussche, R.H. Hurt, A.B. Kane, H. Gao, Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat. Nanotechnol. 6, 714–719 (2011). https://doi.org/10.1038/nnano.2011.151 CrossRefGoogle Scholar
  59. 59.
    X. Yi, X. Shi, H. Gao, A universal law for cell uptake of one-dimensional nanomaterials. Nano Lett. 14, 1049–1055 (2014). https://doi.org/10.1021/nl404727m CrossRefGoogle Scholar
  60. 60.
    S. Nangia, R. Sureshkumar, Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir 28, 17666–17671 (2012). https://doi.org/10.1021/la303449d CrossRefGoogle Scholar
  61. 61.
    Y. Li, N. Gu, Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study. J. Phys. Chem. B 114, 2749–2754 (2010). https://doi.org/10.1021/jp904550b CrossRefGoogle Scholar
  62. 62.
    Y. Li, N. Gu, Computer simulation of the inclusion of hydrophobic nanoparticles into a lipid bilayer. J. Nanosci. Nanotechnol. 10, 7616–7619 (2010)CrossRefGoogle Scholar
  63. 63.
    Y. Li, X. Chen, N. Gu, Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J. Phys. Chem. B 112, 16647–16653 (2008). https://doi.org/10.1021/jp8051906 CrossRefGoogle Scholar
  64. 64.
    Y. Li, T. Yue, K. Yang, X. Zhang, Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Biomaterials 33, 4965–4973 (2012). https://doi.org/10.1016/j.biomaterials.2012.03.044 CrossRefGoogle Scholar
  65. 65.
    K. Yang, Y.Q. Ma, Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat. Nanotechnol. 5, 579–583 (2010). https://doi.org/10.1038/nnano.2010.141 CrossRefGoogle Scholar
  66. 66.
    K. Yang, B. Yuan, Y.Q. Ma, Influence of geometric nanoparticle rotation on cellular internalization process. Nanoscale 5, 7998–8006 (2013). https://doi.org/10.1039/C3NR01561K CrossRefGoogle Scholar
  67. 67.
    H.Z. Zhang, L. Wang, B. Yuan, K. Yang, Y.Q. Ma, Effect of receptor structure and length on the wrapping of a nanoparticle by a lipid membrane. Materials 7, 3855–3866 (2014). https://doi.org/10.3390/ma7053855 CrossRefGoogle Scholar
  68. 68.
    T. Yue, X. Zhang, Molecular understanding of receptor mediated membrane responses to ligand-coated nanoparticles. Soft Matter 7, 9104–9112 (2011). https://doi.org/10.1039/C1SM05398A CrossRefGoogle Scholar
  69. 69.
    T.T. Yue, X.R. Zhang, Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles. ACS Nano 6, 3196–3205 (2012). https://doi.org/10.1021/nn205125e CrossRefGoogle Scholar
  70. 70.
    J. Manson, D. Kumar, B.J. Meenan, D. Dixon, Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull. 44, 99–105 (2011). https://doi.org/10.1007/s13404-011-0015-8 CrossRefGoogle Scholar
  71. 71.
    P.M. Tiwari, K. Vig, V.A. Dennis, S.R. Singh, Functionalized gold nanoparticles and their biomedical applications. Nano 1, 31–63 (2011). https://doi.org/10.3390/nano1010031 CrossRefGoogle Scholar
  72. 72.
    W.S. Cho, M. Cho, J. Jeong, M. Choi, B.S. Han, H.S. Shin, J. Hong, B.H. Chung, J. Jeong, M.H. Cho, Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 245, 116–123 (2010). https://doi.org/10.1016/j.taap.2010.02.013 CrossRefGoogle Scholar
  73. 73.
    Y. Pan, S. Neuss, A. Liefert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, J. Jahnen-Dachent, Size-dependent cytotoxicity of gold nanoparticles. Small 3, 1941–1949 (2007). https://doi.org/10.1002/smll.200700378 CrossRefGoogle Scholar
  74. 74.
    J.F. Hainfeld, D.N. Slatkin, H.M. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, N309–N315 (2004). PMID: 15509078CrossRefGoogle Scholar
  75. 75.
    L. Monticelli, S.K. Kandasamy, X. Periole, R.G. Larson, D.P. Tieleman, M. SJ, The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008). https://doi.org/10.1021/ct700324x CrossRefGoogle Scholar
  76. 76.
    S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. De Vries, The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007). https://doi.org/10.1021/jp071097f CrossRefGoogle Scholar
  77. 77.
    R. Baron, A.H. de Vries, P.H. Hunenberger, W.F. van Gunsteren, Configurational entropies of lipids in pure and mixed bilayers from atomic level and coarse-grained molecular dynamics simulations. J. Phys. Chem. B 110, 15602–15614 (2006). https://doi.org/10.1021/jp061627s CrossRefGoogle Scholar
  78. 78.
    O.S. Lee, G.S. Schatz, Interaction between DNAs on a gold surface. J. Phys. Chem. C 113, 15941–15947 (2009). https://doi.org/10.1021/jp905469q CrossRefGoogle Scholar
  79. 79.
    O.S. Lee, G.S. Schatz, Molecular dynamics simulation of DNA-functionalized gold nanoparticles. J. Phys. Chem. C 113, 2316–2321 (2009). https://doi.org/10.1021/jp8094165 CrossRefGoogle Scholar
  80. 80.
    C.I. Chang, W.J. Lee, T.F. Young, S.P. Ju, C.W. Chang, H.L. Chen, J.G. Chang, Adsorption mechanism of water molecules surrounding Au nanoparticles of different sizes. J. Chem. Phys. 128, 154703 (2008). https://doi.org/10.1063/1.2897931 CrossRefGoogle Scholar
  81. 81.
    J. Lin, H. Zhang, Z. Chen, Y. Zheng, Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4, 5421–5429 (2010). https://doi.org/10.1021/nn1010792 CrossRefGoogle Scholar
  82. 82.
    L. Hoefler, R.E. Gyurcsanyi, Coarse grained molecular dynamics simulation of electromechanically-gated DNA modified conical nanopores. Electroanalysis 20, 301–307 (2008). https://doi.org/10.1002/elan.200704058 CrossRefGoogle Scholar
  83. 83.
    B. Song, H.J. Yuan, C.J. Jameson, S. Murad, Role of surface ligands in nanoparticle permeation through a model membrane: a coarse-grained molecular dynamics simulations study. Mol. Phys. 110, 2181–2195 (2012). https://doi.org/10.1080/00268976.2012.668964 CrossRefGoogle Scholar
  84. 84.
    H. Lee, A.H. de Vries, S.J. Marrink, R.W. Pastor, A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. J. Phys. Chem. B 113, 13186–13194 (2009). https://doi.org/10.1021/jp9058966 CrossRefGoogle Scholar
  85. 85.
    H. Lee, R.W. Pastor, Coarse-grained model for PEGylated lipids: effect of PEGylation on the size and shape of self-assembled structures. J. Phys. Chem. B 115, 7830–7837 (2011). https://doi.org/10.1021/jp2020148 CrossRefGoogle Scholar
  86. 86.
    G. Rossi, P.F.J. Fuchs, J. Barnoud, L. Monticelli, A coarse-grained MARTINI model of polyethylene glycol and of polyoxyethylene alkyl ether surfactants. J. Phys. Chem. B 116(49), 14353–14362 (2012). https://doi.org/10.1021/jp3095165 CrossRefGoogle Scholar
  87. 87.
    W.D. Luedtke, U. Landman, Structure and thermodynamics of self-assembled monolayers on gold nanocrystallites. J. Phys. Chem. B 102, 6566–6572 (1998). https://doi.org/10.1021/jp981745i CrossRefGoogle Scholar
  88. 88.
    M.J. Hostetler, J.E. Wingate, C.J. Zhong, J.E. Harris, R.W. Vachet, M.R. Clark, J.D. Londono, S.J. Green, J.J. Stokes, G.D. Wignall, G.L. Glish, M.D. Porter, N.D. Evans, R.W. Murray, Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14, 17–30 (1998). https://doi.org/10.1021/la970588w CrossRefGoogle Scholar
  89. 89.
    C. Chevigny, F. Dalmas, E. Di Cola, D. Gigmes, D. Bertin, F. Boué, J. Jestin, Polymer-grafted-nanoparticles nanocomposites: dispersion, grafted chain conformation, and rheological behavior. Macromolecules 44, 122–133 (2010). https://doi.org/10.1021/ma101332s CrossRefGoogle Scholar
  90. 90.
    C. Wu, Simulated glass transition of poly (ethylene oxide) bulk and film: a comparative study. J. Phys. Chem. B 115, 11044–11052 (2011). https://doi.org/10.1021/jp205205x CrossRefGoogle Scholar
  91. 91.
    D. Barbier, D. Brown, A.C. Grillet, S. Neyertz, Interface between end-functionalized PEG oligomers and a silica nanoparticle studied by molecular dynamics simulations. Macromolecules 37, 4695–4710 (2004). https://doi.org/10.1021/ma0359537 CrossRefGoogle Scholar
  92. 92.
    A. Ghanbari, M. Rahimi, J. Dehghany, Influence of surface grafted polymers on the polymer dynamics in a silica–polystyrene nanocomposite: a coarse-grained molecular dynamics investigation. J. Phys. Chem. C 117, 25069–25076 (2013). https://doi.org/10.1021/jp407109r CrossRefGoogle Scholar
  93. 93.
    M.K. Corbierre, N.S. Cameron, M. Sutton, S.G. Mochrie, L.B. Lurio, A. Rühm, R.B. Lennox, Polymer-stabilized AuNPs and their incorporation into polymer matrices. J. Am. Chem. Soc. 123, 10411–10412 (2001). https://doi.org/10.1021/ja0166287 CrossRefGoogle Scholar
  94. 94.
    J.S. Smith, D. Bedrov, G.D. Smith, A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Compos. Sci. Technol. 63, 1599–1605 (2003). https://doi.org/10.1016/S0266-3538(03)00061-7 CrossRefGoogle Scholar
  95. 95.
    T.V. Ndoro, E. Voyiatzis, A. Ghanbari, D.N. Theodorou, M.C. Böhm, F. Müller-Plathe, Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix: atomistic molecular dynamics simulations. Macromolecules 44, 2316–2327 (2011). https://doi.org/10.1021/ma102833u CrossRefGoogle Scholar
  96. 96.
    B. Hong, A.Z. Panagiotopoulos, Molecular dynamics simulations of silica nanoparticles grafted with poly (ethylene oxide) oligomer chains. J. Phys. Chem. B 116, 2385–2395 (2012). https://doi.org/10.1021/jp2112582 CrossRefGoogle Scholar
  97. 97.
    A.S. Karakoti, S. Das, S. Thevuthasan, S. Seal, PEGylated inorganic nanoparticles. Angew. Chem. Int. Ed. Engl. 50, 1980–1994 (2011). https://doi.org/10.1002/anie.201002969 CrossRefGoogle Scholar
  98. 98.
    X. Xia, M. Yang, Y. Wang, Y. Zheng, Q. Li, J. Chen, Xia, Quantifying the coverage density of poly(ethylene glycol) chains on surfaces of gold nanostructures. ACS Nano 6, 512–522 (2011). https://doi.org/10.1021/nn2038516 CrossRefGoogle Scholar
  99. 99.
    O.S. Lee, G.C. Schatz, Computational simulations of the interaction of lipid membranes with DNA-functionalized gold nanoparticles. Methods Mol. Biol. 726, 283–296 (2011). https://doi.org/10.1007/978-1-61779-052-2_18 CrossRefGoogle Scholar
  100. 100.
    E.J. Wallace, M.S.P. Sansom, Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano Lett. 8, 2751–2756 (2008). https://doi.org/10.1021/nl801217f CrossRefGoogle Scholar
  101. 101.
    Q. Zeng, A. Yu, G. Lu, Evaluation of Interaction Forces between Nanoparticles by Molecular Dynamics Simulation. Ind. Eng. Chem. Res. 49, 12793–12797 (2010). https://doi.org/10.1021/ie101751v CrossRefGoogle Scholar
  102. 102.
    J.K. Vasir, V. Labhasetwar, Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 29, 4244–4252 (2008). https://doi.org/10.1016/j.biomaterials.2008.07.020 CrossRefGoogle Scholar
  103. 103.
    I.U. Vakarelski, S.C. Brown, K. Higashitani, B.M. Moudgil, Penetration of living cell membranes with fortified carbon nanotube tips. Langmuir 23, 10893–10896 (2007). https://doi.org/10.1021/la701878n CrossRefGoogle Scholar
  104. 104.
    A.E. Skjevik, B.D. Madej, C.J. Dickson, C. Lin, K. Teigen, R.C. Walker, I.R. Gould, Simulation of lipid bilayer self-assembly using all-atom lipid force fields. Phys. Chem. Chem. Phys. 18, 10573–10584 (2016). https://doi.org/10.1039/c5cp07379k CrossRefGoogle Scholar
  105. 105.
    N. Kučerka, J.F. Nagle, J.N. Sachs, S.E. Feller, J. Pencer, A. Jackson, J. Katsaras, Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys. J. 95, 2356–2367 (2008). https://doi.org/10.1529/biophysj.108.132662 CrossRefGoogle Scholar
  106. 106.
    P.J. Bond, M.S.P. Sansom, Insertion and assembly of membrane proteins via simulation. J. Am. Chem. Soc. 128, 2697–2704 (2006). https://doi.org/10.1021/ja0569104 CrossRefGoogle Scholar
  107. 107.
    L.F. Braganza, D.L. Worcester, Structural changes in lipid bilayers and biological membranes caused by hydrostatic pressure. Biochemistry 25, 7484–7488 (1986). https://doi.org/10.1021/bi00371a034 CrossRefGoogle Scholar
  108. 108.
    R. Chen, D. Poger, A.E. Mark, Effect of high pressure on fully hydrated DPPC and POPC bilayers. J. Phys. Chem. B 115, 1038–1044 (2011). https://doi.org/10.1021/jp110002q CrossRefGoogle Scholar
  109. 109.
    R.M. Venable, F.L.H. Brown, R.W. Pastor, Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem. Phys. Lipids 192, 60–74 (2015). https://doi.org/10.1016/j.chemphyslip.2015.07.014 CrossRefGoogle Scholar
  110. 110.
    R.H. Terrill, T.A. Postlethwaite, C. Chen, C.D. Poon, A. Terzis, A. Chen, J.E. Hutchison, M.R. Clark, G. Wingall, J.D. Londono, R. Superfine, M. Falvo, C.S. Johnson Jr., E.T. Samulski, R.W. Murray, Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J. Am. Chem. Soc. 117, 12537–12548 (1995). https://doi.org/10.1021/ja00155a017 CrossRefGoogle Scholar
  111. 111.
    J.V. Jokerst, T. Lobovkina, R.N. Zare, S.S. Gambhir, Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6, 715–728 (2011). https://doi.org/10.2217/nnm.11.19 CrossRefGoogle Scholar
  112. 112.
    P.A. Oroskar, C.J. Jameson, S. Murad, Molecular dynamics simulations reveal how characteristics of surface and permeant affect permeation events at the surface of soft matter. Mol. Simul. 43, 438–466 (2017). https://doi.org/10.1080/08927022.2016.1268259 CrossRefGoogle Scholar
  113. 113.
    R.C. Van Lehn, A. Alexander-Katz, Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins. J. Phys. Chem. B 118, 12586–12598 (2014). https://doi.org/10.1021/jp506239p CrossRefGoogle Scholar
  114. 114.
    A.A. Gurtovenko, I. Vattulainen, Molecular mechanism for lipid flip-flops. J. Phys. Chem. B 111(48), 13554–13559 (2007). https://doi.org/10.1021/jp077094k CrossRefGoogle Scholar
  115. 115.
    D.P. Tieleman, S.J. Marrink, Lipids out of equilibrium: energetics of desorption and pore mediated flip-flop. J. Am. Chem. Soc. 128, 12462–12467 (2006). https://doi.org/10.1021/ja0624321 CrossRefGoogle Scholar
  116. 116.
    N. Sapay, W.F.D. Bennett, D.P. Tieleman, Thermodynamics of flip-flop and desorption for a systematic series of phosphatidylcholine lipids. Soft Matter 5, 3295–3302 (2009). https://doi.org/10.1039/b902376c CrossRefGoogle Scholar
  117. 117.
    F.X. Contreras, L. Sánchez-Magraner, A. Alonso, F.M. Goñi, Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett. 584, 1779–1786 (2010). https://doi.org/10.1016/j.febslet.2009.12.049 CrossRefGoogle Scholar
  118. 118.
    B. Fadeel, D. Xue, The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit. Rev. Biochem. Mol. Biol. 44, 264–277 (2009). https://doi.org/10.1080/10409230903193307 CrossRefGoogle Scholar
  119. 119.
    P.F. Devaux, Static and dynamic lipid asymmetry in cell membranes. Biochemist 30, 1163–1173 (1991). https://doi.org/10.1021/bi00219a001 CrossRefGoogle Scholar
  120. 120.
    J.C. Mathai, S. Tristram-Nagle, J.F. Nagle, M.L. Zeidel, Structural determinants of water permeability through the lipid membrane. J. Gen. Physiol. 131, 69–76 (2008). https://doi.org/10.1085/jgp.200709848 CrossRefGoogle Scholar
  121. 121.
    W.F.D. Bennett, D.P. Tieleman, Water defect and pore formation in atomistic and coarse-grained lipid membranes: pushing the limits of coarse graining. J. Chem. Theory Comput. 7, 2981–2988 (2011). https://doi.org/10.1021/ct200291v CrossRefGoogle Scholar
  122. 122.
    W.F.D. Bennett, N. Sapay, D.P. Tieleman, Atomistic simulations of pore formation and closure in lipid bilayers. Biophys. J. 106, 210–219 (2014). https://doi.org/10.1016/j.bpj.2013.11.4486 CrossRefGoogle Scholar
  123. 123.
    S. Wang, R.G. Larson, Water channel formation and ion transport in linear and branched lipid bilayers. Phys. Chem. Chem. Phys. 16, 7251–7262 (2014). https://doi.org/10.1039/c3cp55116d CrossRefGoogle Scholar
  124. 124.
    K. Koshiyama, T. Yano, T. Kodama, Self-organization of a stable pore structure in a phospholipid bilayer. Phys. Rev. Lett. 105, 018105 (2010). https://doi.org/10.1103/PhysRevLett.105.018105 CrossRefGoogle Scholar
  125. 125.
    A.A. Gurtovenko, I. Vattulainen, Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophys. J. 92, 1878–1890 (2007). https://doi.org/10.1529/biophysj.106.094797 CrossRefGoogle Scholar
  126. 126.
    H. Leontiadou, A.E. Mark, S.J. Marrink, Ion transport across transmembrane pores. Biophys. J. 92, 4209–4215 (2007). https://doi.org/10.1529/biophysj.106.101295 CrossRefGoogle Scholar
  127. 127.
    T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Niidome, PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 114, 343–347 (2006). https://doi.org/10.1016/j.jconrel.2006.06.017 CrossRefGoogle Scholar
  128. 128.
    A.V. Alekseeva, V.A. Bogatyrev, L.A. Dykman, B.N. Khlebtsov, L.A. Trachuk, A.G. Melnikov, N.G. Khlebtsov, Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay. Appl. Opt. 44, 6285–6295 (2005). https://doi.org/10.1364/AO.44.006285 CrossRefGoogle Scholar
  129. 129.
    M.A. El-Sayed, A.A. Shabaka, O.A. El-Shabrawy, N.A. Yassin, S.S. Mahmoud, S.M. El-Shenawy, A.A. Emad, W.H. Eisa, N.M. Farag, M.A. El-Shaer, N. Salah, A.M. Al-Abd, Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in Ehrlich carcinoma solid tumor model. PLoS One 8, e76207 (2013). https://doi.org/10.1371/journal.pone.0076207 CrossRefGoogle Scholar
  130. 130.
    X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006). https://doi.org/10.1021/ja057254a CrossRefGoogle Scholar
  131. 131.
    T.B. Huff, L. Tong, Y. Zhao, M.N. Hansen, J.X. Cheng, A. Wei, Hyperthermic effects of gold nanorods on tumor cells. Future Med 2, 125–132 (2007). https://doi.org/10.2217/17435889.2.1.125 CrossRefGoogle Scholar
  132. 132.
    C.Z. Li, K.B. Male, S. Hrapovic, J.H.T. Luong, Fluorescence properties of gold nanorods and their application for DNA biosensing. Chem. Commun. 2005, 3924–3926 (2005). https://doi.org/10.1039/B504186D CrossRefGoogle Scholar
  133. 133.
    K.Y. Lin, A.F. Bagley, A.Y. Zhang, D.L. Karl, S.S. Yoon, S.N. Bhatia, Gold nanorod photothermal therapy in a genetically engineered mouse model of soft tissue sarcoma. Nano Life 1, 277–287 (2010). https://doi.org/10.1142/S1793984410000262 CrossRefGoogle Scholar
  134. 134.
    S. Link, M.B. Mohamed, M.A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103, 3073–3077 (1999). https://doi.org/10.1021/jp990183f CrossRefGoogle Scholar
  135. 135.
    L.M. Maestro, E. Camarillo, J.A. Sánchez-Gil, R. Rodríguez-Oliveros, J. Ramiro-Bargueño, A.J. Caamaño, D. Jaque, Gold nanorods for optimized photothermal therapy: the influence of irradiating in the first and second biological windows. RSC Adv. 4, 54122–54129 (2014). https://doi.org/10.1039/C4RA08956A CrossRefGoogle Scholar
  136. 136.
    L. Vigderman, B.P. Khanal, E.R. Zubarev, Functional gold nanorods: synthesis, self-sssembly, and sensing applications. Adv. Mater. 24, 4811–4841 (2012). https://doi.org/10.1002/adma.201201690 CrossRefGoogle Scholar
  137. 137.
    G. von Maltzahn, J.H. Park, A. Agrawal, N.K. Bandaru, S.K. Das, M.J. Sailor, S.N. Bhatia, Computationally-guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69, 3892–3900 (2009). https://doi.org/10.1158/0008-5472.CAN-08-4242 CrossRefGoogle Scholar
  138. 138.
    G. von Maltzahn, A. Centrone, J.H. Park, R. Ramanathan, M.J. Sailor, T.A. Hatton, S.N. Bhatia, SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv. Mater. 21, 3175–3180 (2009). https://doi.org/10.1002/adma.200803464 CrossRefGoogle Scholar
  139. 139.
    H. Wang, T.B. Huff, D.A. Zweifel, W. He, P.S. Low, A. Wei, J.X. Cheng, In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl. Acad. Sci. U. S. A. 102, 15752–15756 (2005). https://doi.org/10.1073/pnas.0504892102 CrossRefGoogle Scholar
  140. 140.
    Y. Xiao, H. Hong, V.Z. Matson, A. Javadi, W. Xu, Y. Yang, Y. Zhang, J.W. Engle, R.J. Nickles, W. Cai, D.A. Steeber, S. Gong, Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics 2, 757–768 (2012). https://doi.org/10.7150/thno.4756 CrossRefGoogle Scholar
  141. 141.
    J. Zhu, L. Huang, J. Zhao, Y. Wang, Y. Zhao, L. Hao, Y. Lu, Shape dependent resonance light scattering properties of gold nanorods. Mater. Sci. Eng. B 121, 199–203 (2005). https://doi.org/10.1016/j.mseb.2005.03.022 CrossRefGoogle Scholar
  142. 142.
    A. NNM, Y.Y. Cheng, O. NMN, T.T. Kamarddin, E. Rozlan, T.W. Schmidt, D. HTT, C. Boyer, Effect of gold nanoparticle shapes for phototherapy and drug delivery. Polym. Chem. 7, 2888–2903 (2016). https://doi.org/10.1039/C6PY00465B CrossRefGoogle Scholar
  143. 143.
    P.A. Oroskar, C.J. Jameson, S. Murad, Rotational behavior of PEGylated gold nanorods in a lipid bilayer system. Mol. Phys. 115, 1122–1143 (2017). https://doi.org/10.1080/00268976.2016.1248515 CrossRefGoogle Scholar
  144. 144.
    T.M. Nguyen, J. Gigault, V.A. Hackley, PEGylated gold nanorod separation based on aspect ratio: characterization by asymmetric-flow field flow fractionation with UV-Vis detection. Anal. Bioanal. Chem. 406, 1651–1659 (2014). https://doi.org/10.1007/s00216-013-7318-y CrossRefGoogle Scholar
  145. 145.
    X. Yang, Z. Chen, L. Zhang, W.Y. Yung, K.C. Leung, H.Y. Chan, C.H. Choi, Mechanism for the cellular uptake of targeted gold nanorods of defined aspect ratios. Small 12, 5178–5189 (2016). https://doi.org/10.1002/smll.201601483 CrossRefGoogle Scholar
  146. 146.
    X.X. Liu, F.C. Wu, Y. Tian, M. Wu, Q. Zhou, S. Jiang, Z.W. Niu, Size dependent cellular uptake of rod-like bionanoparticles with different aspect ratios. Sci. Rep. 6, 24567 (2016). https://doi.org/10.1038/srep24567 CrossRefGoogle Scholar
  147. 147.
    Y. Gu, W. Sun, G. Wang, N. Fang, Single particle orientation and rotation tracking discloses distinctive rotational dynamics of drug delivery vectors on live cell membranes. J. Am. Chem. Soc. 133, 5720–5723 (2011). https://doi.org/10.1021/ja200603x CrossRefGoogle Scholar
  148. 148.
    Y. Gu, X.W. Di, W. Sun, G.F. Wang, N. Fang, Three-dimensional super-localization and tracking of single gold nanoparticles in cells. Anal. Chem. 84, 4111–4117 (2012). https://doi.org/10.1021/ac300249d CrossRefGoogle Scholar
  149. 149.
    Y. Gu, W. Sun, G. Wang, M.T. Zimmermann, R.L. Jernigan, N. Fang, Revealing rotational modes of functionalized gold nanorods on live cell membranes. Small 9, 785–792 (2013). https://doi.org/10.1002/smll.201201808 CrossRefGoogle Scholar
  150. 150.
    A. Tcherniak, S. Dominguez-Medina, W.S. Chang, P. Swanglap, L.S. Slaughter, C.F. Landes, S. Link, One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods. J. Phys. Chem. C 115, 15938–15949 (2011). https://doi.org/10.1021/jp206203s CrossRefGoogle Scholar
  151. 151.
    Y. Gu, G.F. Wang, N. Fang, Simultaneous single-particle superlocalization and rotational tracking. ACS Nano 7, 1658–1665 (2013). https://doi.org/10.1021/nn305640y CrossRefGoogle Scholar
  152. 152.
    T. Li, Q. Li, Y. Xu, X.J. Chen, Q.F. Dai, H. Liu, S. Lan, S. Tie, L.J. Wu, Three-dimensional orientation sensors by defocused imaging of gold nanorods through an ordinary wide-field microscope. ACS Nano 6, 1268–1277 (2012). https://doi.org/10.1021/nn203979n CrossRefGoogle Scholar
  153. 153.
    L. Xiao, Y. Qiao, Y. He, E.S. Yeung, Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy. J. Am. Chem. Soc. 133, 10638–10645 (2011). https://doi.org/10.1021/ja203289m CrossRefGoogle Scholar
  154. 154.
    D. Xu, Y. He, E.S. Yeung, Direct imaging of transmembrane dynamics of single nanoparticles with darkfield microscopy: improved orientation tracking at cell sidewall. Anal. Chem. 86, 3397–3404 (2014). https://doi.org/10.1021/ac403700u CrossRefGoogle Scholar
  155. 155.
    S. Enoki, R. Iino, Y. Niitani, Y. Minagawa, M. Tomishige, H. Noji, High-speed angle-resolved imaging of a single gold nanorod with microsecond temporal resolution and one-degree angle precision. Anal. Chem. 87, 2079–2086 (2015). https://doi.org/10.1021/ac502408c CrossRefGoogle Scholar
  156. 156.
    L. Chen, S. Xiao, H. Zhu, L. Wang, H.J. Liang, Shape-dependent internalization kinetics of nanoparticles by membranes. Soft Matter 12, 2632–2641 (2016). https://doi.org/10.1039/c5sm01869b CrossRefGoogle Scholar
  157. 157.
    H.M. Ding, Y.Q. Ma, Theoretical and computational investigations of nanoparticle–biomembrane interactions in cellular delivery. Small 11, 1055–1071 (2015). https://doi.org/10.1002/smll.201401943 CrossRefGoogle Scholar
  158. 158.
    S. Zhang, H. Gao, G. Bao, Physical principles of nanoparticle cellular endocytosis. ACS Nano 9, 8655–8671 (2015). https://doi.org/10.1021/acsnano.5b03184 CrossRefGoogle Scholar
  159. 159.
    Y. Li, M. Kroger, W.K. Liu, Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Biomaterials 35, 8467–8478 (2014). https://doi.org/10.1016/j.biomaterials.2014.06.032 CrossRefGoogle Scholar
  160. 160.
    Y. Li, M. Kröger, W.K. Liu, Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale 7, 16631–16646 (2015). https://doi.org/10.1039/C5NR02970H CrossRefGoogle Scholar
  161. 161.
    S.L.S. Liu, R. O'Connor, M.J. Cui, Y. Yoon, Y. Kurilova, S. Lee, W. D Cho, Simultaneous in situ quantification of two cellular lipid pools using orthogonal fluorescent sensors. Angew. Chem. Int. Ed. 53, 14387–14391 (2014). https://doi.org/10.1002/anie.201408153 CrossRefGoogle Scholar
  162. 162.
    S.L. Liu, R. Sheng, J.H. Jung, L. Wang, E. Stec, M.J. O'Connor, S. Song, R.K. Bikkavilli, R.A. Winn, D. Lee, K. Baek, K. Ueda, I. Levitan, K.P. Kim, W. Cho, Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat. Chem. Biol. 13, 268–274 (2017). https://doi.org/10.1038/NCHEMBIO.2268 CrossRefGoogle Scholar
  163. 163.
    D.A. Brown, E. London, Structure and functions of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224 (2000). https://doi.org/10.1074/jbc.R000005200 CrossRefGoogle Scholar
  164. 164.
    J. Kapla, B. Stevensson, M. Dahlberg, A. Maliniak, Molecular dynamics simulations of membranes composed of glycolipids and phospholipids. J. Phys. Chem. B 116, 244–252 (2012). https://doi.org/10.1021/jp209268p CrossRefGoogle Scholar
  165. 165.
    B. Kang, M.A. Mackey, M.A. El-Sayed, Nuclear targeting of gold nanoparticles in cancer cells induces dna damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc. 132, 1517–1519 (2010). https://doi.org/10.1021/ja9102698 CrossRefGoogle Scholar
  166. 166.
    M.R.K. Ali, Y. Wu, D. Ghosh, B.H. Do, K. Chen, M.R. Dawson, N. Fang, T.A. Sulchek, M.A. El-Sayed, Nuclear membrane-targeted gold nanoparticles inhibit cancer cell migration and invasion. ACS Nano 11, 3716–3726 (2017). https://doi.org/10.1021/acsnano.6b08345 CrossRefGoogle Scholar
  167. 167.
    R. Popovtzer, A. Agrawal, N.A. Kotov, A. Popovtzer, J. Balter, T.E. Carey, R. Kopelman, Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 8, 4593–4596 (2008). https://doi.org/10.1021/nl8029114 CrossRefGoogle Scholar
  168. 168.
    J. Kim, N. Lee, T. Hyeon, Recent development of nanoparticles for molecular imaging. Philos. Transact. A Math. Phys. Eng. Sci. 375, 20170022 (2017). https://doi.org/10.1098/rsta.2017.0022 CrossRefGoogle Scholar
  169. 169.
    Y. Zhao, Y. Tian, Y. Cui, W. Liu, W. Ma, X. Jiang, Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria. J. Am. Chem. Soc. 132, 12349–12356 (2010). https://doi.org/10.1021/ja1028843 CrossRefGoogle Scholar
  170. 170.
    F.Y. Kong, J.W. Zhang, R.F. Li, Z.X. Wang, W.J. Wang, W. Wang, Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22, 1445(1–13) (2017). https://doi.org/10.3390/molecules22091445 CrossRefGoogle Scholar
  171. 171.
    M.M. Mahan, A.L. Doiron, Gold nanoparticles as X-ray, CT, and multimodal imaging contrast agents: formulation, targeting, and methodology. J. Nanomater. 5837276, 1–15 (2018). https://doi.org/10.1155/2018/5837276 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cynthia J. Jameson
    • 1
  • Priyanka Oroskar
    • 2
  • Bo Song
    • 3
  • Huajun Yuan
    • 4
  • Sohail Murad
    • 5
    Email author
  1. 1.Department of ChemistryUniversity of IllinoisChicagoUSA
  2. 2.Kazimira LLCWatkinsUSA
  3. 3.Department of Chemical EngineeringUniversity of IllinoisChicagoUSA
  4. 4.AdvanSixRichmondUSA
  5. 5.Department of Chemical and Biological EngineeringIllinois Institute of TechnologyChicagoUSA

Personalised recommendations