Advertisement

Asymmetric Model Membranes: Frontiers and Challenges

  • Michael H. L. Nguyen
  • Brett W. Rickeard
  • Mitchell DiPasquale
  • Drew MarquardtEmail author
Chapter

Abstract

Cellular membranes are highly complex liquid-crystalline entities, which makes it difficult for researchers to connect specific components and their effects on overall membrane structure, function, and biochemical and biophysical properties. To circumvent this issue, model membranes with controlled compositions have since become a staple of biomembrane research, helping researchers better understand the inner mechanisms of cell membranes. These simplified lipid systems have predominately been composed of symmetric lipid bilayers – where both leaflets are composed of the same constituents. Only recently has there been a shift toward the use of bilayer systems with asymmetric distributions of lipids across the two monolayers. This is because most (if not all) biological membranes possess lipid asymmetry which has sparked an intense desire to study its effects on membrane structure, dynamics, and membrane-associated molecules. In recent years, many have sought out to develop asymmetric model construction methods to facilitate these studies. In this chapter, we aim to describe novel and relevant asymmetric preparation methods, as well as their pros and cons to paint an image of the current state of biomembrane research and the challenges the field faces. Ultimately, these techniques are at the forefront of an exciting biomembrane renaissance.

Keywords

Asymmetry Membranes Biophysics 

Notes

Acknowledgements

This work acknowledges support from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

References

  1. 1.
    R.J. Alsop, L. Toppozini, D. Marquardt, N. Kuerka, T.A. Harroun, M.C. Rheinstadter, Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes. Biochimica et Biophysica Acta (BBA) – Biomembranes 1848(3), 805–812 (2015)Google Scholar
  2. 2.
    H.D. Andersen, C. Wang, L. Arleth, G.H. Peters, P. Westh, Reconciliation of opposing views on membrane sugar interactions. Proc. Natl. Acad. Sci. 108(5), 1874–1878 (2011)Google Scholar
  3. 3.
    T.G. Anderson, A. Tan, P. Ganz, J. Seelig, Calorimetric measurement of phospholipid interaction with methyl–cyclodextrin. Biochemistry 43(8), 2251–2261 (2004)Google Scholar
  4. 4.
    A.G. Ayuyan, F.S. Cohen, Raft composition at physiological temperature and pH in the absence of detergents. Biophys. J. 94(7), 2654–2666 (2008)Google Scholar
  5. 5.
    N.E. Barlow, E. Smpokou, M.S. Friddin, R. Macey, I.R. Gould, C. Turnbull, A.J. Flemming, N.J. Brooks, O. Ces, and L.M.C. Barter, Engineering plant membranes using droplet interface bilayers. Biomicrofluidics 11(2), 024107 (2017)Google Scholar
  6. 6.
    R.L. Biltonen, D. Lichtenberg, The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chem. Phys. Lipids 64(1–3), 129–142 (1993)Google Scholar
  7. 7.
    M.S. Bretscher, Asymmetrical lipid bilayer structure for biological membranes. Nat. New Biol. 236, 11–12 (1972)Google Scholar
  8. 8.
    M.S. Bretscher, Membrane structure: some general principles. Science, New Series 181(4100), 622–629 (1973)Google Scholar
  9. 9.
    I. Burgess, M. Li, S. Horswell, G. Szymanski, J. Lipkowski, J. Majewski, S. Satija, Electric field-driven transformations of a supported model biological membrane an electrochemical and neutron reflectivity study. Biophys. J. 86(3), 1763–1776 (2004)Google Scholar
  10. 10.
    A. Callan-Jones, B. Sorre, P. Bassereau, Curvature-driven lipid sorting in biomembranes. Cold Spring Harb. Perspect. Biol. 3(2), a004648–a004648 (2011)Google Scholar
  11. 11.
    Y.H.M. Chan, S.G. Boxer, Model membrane systems and their applications. Curr. Opin. Chem. Biol. 11(6), 581–587 (2007)Google Scholar
  12. 12.
    X. Chen, S. Liu, B. Deme, V. Cristiglio, D. Marquardt, R. Weller, P. Rao, Y. Wang, J. Bradshaw, Efficient internalization of TAT peptide in zwitterionic DOPC phospholipid membrane revealed by neutron diffraction. Biochim. Biophys. Acta Biomembr. 1859(5), 910–916 (2017)Google Scholar
  13. 13.
    H.T. Cheng, E. London, Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. J. Biol. Chem. 284(10), 6079–6092 (2009)Google Scholar
  14. 14.
    H.T. Cheng, E. London, Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature. Biophys. J. 100(11), 2671–2678 (2011)Google Scholar
  15. 15.
    S. Chiantia, E. London, Acyl chain length and saturation modulate interleaflet coupling in asymmetric bilayers: effects on dynamics and structural order. Biophys. J. 103(11), 2311–2319 (2012)Google Scholar
  16. 16.
    S. Chiantia, P. Schwille, A.S. Klymchenko, E. London, Asymmetric GUVs prepared by MCD-mediated lipid exchange: an FCS study. Biophys. J. 100(1), L1–L3 (2011)Google Scholar
  17. 17.
    E. Del Valle, Cyclodextrins and their uses: a review. Process Biochem. 39(9), 1033–1046 (2004)Google Scholar
  18. 18.
    P.F. Devaux, Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30(5), 1163–1173 (1991)Google Scholar
  19. 19.
    Y.M. Denkins, A.J. Schroit, Phosphatidylserine decarboxylase: generation of asymmetric vesicles and determination of the transbilayer distribution of fluorescent phosphatidylserine in model membrane systems. BBA – Biomembranes 862(2), 343–351 (1986)Google Scholar
  20. 20.
    C. Dietrich, L. Bagatolli, Z. Volovyk, N. Thompson, M. Levi, K. Jacobson, E. Gratton, Lipid rafts reconstituted in model membranes. Biophys. J. 80(3), 1417–1428 (2001)Google Scholar
  21. 21.
    M. Doktorova, F.A. Heberle, B. Eicher, F. Standaert, J. Katsaras, E. London, G. Pabst, D. Marquardt, Preparation of asymmetric phospholipid vesicles for use as cell membrane models. Nat. Protocols (2018). https://doi.org/10.1038/s41596-018-0033-6
  22. 22.
    S.J. Eastman, M.J. Hope, P.R. Cullis, Transbilayer transport of phosphatidic acid in response to transmembrane pH gradients. Biochemistry 30(7), 1740–1745 (1991)Google Scholar
  23. 23.
    M. Eeman, M. Deleu, From biological membranes to biomimetic model membranes. Biotechnol. Agron Soc. Environ. 14(4), 719–736 (2010)Google Scholar
  24. 24.
    B. Eicher, F.A. Heberle, D. Marquardt, G.N. Rechberger, J. Katsaras, G. Pabst, Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles. J. Appl. Crystallogr. 50(2), 419–429 (2017)Google Scholar
  25. 25.
    B. Eicher, D. Marquardt, F.A. Heberle, I. Letofsky-Papst, G.N. Rechberger, M.S. Appavou, J. Katsaras, G. Pabst, Intrinsic curvature-mediated transbilayer coupling in asymmetric lipid vesicles. Biophys. J. 114(1), 146–157 (2018)Google Scholar
  26. 26.
    Y. Elani, S. Purushothaman, P.J. Booth, J.M. Seddon, N.J. Brooks, R.V. Law, O. Ces, Measurements of the effect of membrane asymmetry on the mechanical properties of lipid bilayers. Chem. Commun. 6976(51), 6976–6979 (2015)Google Scholar
  27. 27.
    P.V. Escriba, A. Ozaita, C. Ribas, A. Miralles, E. Fodor, T. Farkas, J.A. Garcia-Sevilla, Role of lipid polymorphism in G protein-membrane interactions: nonlamellar-prone phospholipids and peripheral protein binding to membranes. Proc. Natl. Acad. Sci. 94(21), 11375–11380 (1997)Google Scholar
  28. 28.
    S. Fujii, T. Matsuura, T. Sunami, Y. Kazuta, T. Yomo, In vitro evolution of -hemolysin using a liposome display. Proc. Natl. Acad. Sci. 110(42), 16796–16801 (2013)Google Scholar
  29. 29.
    V. Gerke, C.E. Creutz, S.E. Moss, Annexins: linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol. 6(6), 449–461 (2005)Google Scholar
  30. 30.
    M. Gotanda, K. Kamiya, T. Osaki, S. Fujii, N. Misawa, N. Miki, S. Takeuchi, Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells. Sensors Actuators B Chem. 261, 392–397 (2018)Google Scholar
  31. 31.
    T. Hamada, Y. Miura, Y. Komatsu, Y. Kishimoto, M. Vestergaard, M. Takagi, Construction of asymmetric cell-sized lipid vesicles from lipid-coated water-in-oil microdroplets. J. Phys. Chem. B 112(47), 14678–14681 (2008)Google Scholar
  32. 32.
    F.A. Heberle, D. Marquardt, M. Doktorova, B. Geier, R.F. Standaert, P. Heftberger, B. Kollmitzer, J.D. Nickels, R.A. Dick, G.W. Feigenson, J. Katsaras, E. London, G. Pabst, Sub-nanometer structure of an asymmetric model membrane: interleaflet coupling influences domain properties. Langmuir 32(20), 5195–5200 (2016)Google Scholar
  33. 33.
    E.K. Hoffmann, L.O. Simonsen, Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69(2), 315–382 (1989)Google Scholar
  34. 34.
    J.M. Holopainen, M.I. Angelova, P.K. Kinnunen, Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys. J. 78(2), 830–838 (2000)Google Scholar
  35. 35.
    M. Holzer, J. Momm, R. Schubert, Lipid transfer mediated by a recombinant pro-sterol carrier protein 2 for the accurate preparation of asymmetrical membrane vesicles requires a narrow vesicle size distribution: a free-flow electrophoresis study. Langmuir 26(6), 4142–4151 (2010)Google Scholar
  36. 36.
    M.J. Hope, P.R. Cullis, Lipid asymmetry induced by transmembrane pH gradients in large unilamellar vesicles. J. Biol. Chem. 262(9), 4360–4366 (1987)Google Scholar
  37. 37.
    M.J. Hope, T.E. Redelmeier, K.F. Wong, W. Rodrigueza, P.R. Cullis, Phospholipid asymmetry in large unilamellar vesicles induced by transmembrane pH gradients. Biochemistry 28(10), 4181–4187 (1989)Google Scholar
  38. 38.
    P.C. Hu, S. Li, N. Malmstadt, Microfluidic fabrication of asymmetric giant lipid vesicles. ACS Appl. Mater. Interfaces 3(5), 1434–1440 (2011)Google Scholar
  39. 39.
    Z. Huang, E. London, Effect of cyclodextrin and membrane lipid structure upon cyclodextrin lipid interaction. Langmuir 29(47), 14631–14638 (2013)Google Scholar
  40. 40.
    W.L. Hwang, M. Chen, B. Cronin, M.A. Holden, H. Bayley, Asymmetric droplet interface bilayers. J. Am. Chem. Soc. 130(18), 5878–5879 (2008)Google Scholar
  41. 41.
    L.W. Johnson, M.E. Hughes, D.B. Zilversmit, Use of phospholipid exchange protein to measure inside-outside transposition in phosphatidylcholine liposomes. BBA – Biomembranes 375(2), 176–185 (1975)Google Scholar
  42. 42.
    S.Y. Jung, S.T. Retterer, C.P. Collier, On-demand generation of monodisperse femtolitre droplets by shape-induced shear. Lab Chip 10(20), 2688–2694 (2010)Google Scholar
  43. 43.
    K. Kamiya, T. Osaki, S. Fujii, N. Misawa, S. Takeuchi, Nano-sized asymmetric lipid vesicles for drug carrier applications, in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), vol. 2018, 2018, pp. 152–153Google Scholar
  44. 44.
    K. Karamdad, R.V. Law, J.M. Seddon, N.J. Brooks, O. Ces, Studying the effects of asymmetry on the bending rigidity of lipid membranes formed by microfluidics. Chem. Commun. 52(30), 5277–5280 (2016)Google Scholar
  45. 45.
    R.D. Kornberg, H.M. McConnell, Lateral diffusion of phospholipids in a vesicle membrane. Proc. Natl. Acad. Sci. 68(10), 2564–2568 (1971)Google Scholar
  46. 46.
    N. Kučerka, D. Marquardt, T.A. Harroun, M.P. Nieh, S.R. Wassall, de Jong DH, L.V. Schäfer, S.J. Marrink, J. Katsaras, Cholesterol in bilayers with PUFA chains: doping with DMPC or POPC results in sterol reorientation and membrane-domain formation. Biochemistry 49(35), 7485–7493 (2010)Google Scholar
  47. 47.
    B.R. Lentz, Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog. Lipid Res. 42(5), 423–438 (2003)Google Scholar
  48. 48.
    R. Leventis, J.R. Silvius, Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys. J. 81(4), 2257–2267 (2001)Google Scholar
  49. 49.
    T. Lhermusier, H. Chap, B. Payrastre, Platelet membrane phospholipid asymmetry: from the characterization of a scramblase activity to the identification of an essential protein mutated in Scott syndrome: platelet phospholipid scramblase. J. Thromb. Haemost. 9(10), 1883–1891 (2011)Google Scholar
  50. 50.
    G. Li, J. Kim, Z. Huang, J.R. St Clair, D.A. Brown, E. London, Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc. Natl. Acad. Sci. 113(49), 14025–14030 (2016)Google Scholar
  51. 51.
    M.O. Li, Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302(5650), 1560–1563 (2003)Google Scholar
  52. 52.
    L. Lu, J.W. Schertzer, P.R. Chiarot, Continuous microfluidic fabrication of synthetic asymmetric vesicles. Lab Chip 15(17), 3591–3599 (2015)Google Scholar
  53. 53.
    D. Marquardt, J.A. Williams, N. Kučerka, J. Atkinson, S.R. Wassall, J. Katsaras, T.A. Harroun, Tocopherol activity correlates with its location in a membrane: a new perspective on the antioxidant vitamin E. J. Am. Chem. Soc. 135(20), 7523–7533 (2013)Google Scholar
  54. 54.
    D. Marquardt, B. Geier, G. Pabst, Asymmetric lipid membranes: towards more realistic model systems. Membranes 5(2), 180–196 (2015)Google Scholar
  55. 55.
    D. Marquardt, F.A. Heberle, J.D. Nickels, G. Pabst, J. Katsaras, On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons. Soft Matter 11(47), 9055–9072 (2015)Google Scholar
  56. 56.
    D. Marquardt, F.A. Heberle, T. Miti, B. Eicher, E. London, J. Katsaras, G. Pabst, 1H NMR shows slow phospholipid flip-flop in gel and fluid bilayers. Langmuir 33(15), 3731–3741 (2017)Google Scholar
  57. 57.
    S. Matosevic, B.M. Paegel, Layer-by-layer cell membrane assembly. Nat. Chem. 5(11), 958–963 (2013)Google Scholar
  58. 58.
    G. van Meer, Dynamic transbilayer lipid asymmetry. Cold Spring Harb. Perspect. Biol. 3(5), 1–11 (2011)Google Scholar
  59. 59.
    A.A. Mokhtarieh, J. Lee, S. Kim, M.K. Lee, Preparation of siRNA encapsulated nanoliposomes suitable for siRNA delivery by simply discontinuous mixing. Biochim. Biophys. Acta Biomembr. 1860(6), 1318–1325 (2018)Google Scholar
  60. 60.
    M. Mulder, Basic Principles of Membrane Technology, Klewer Academic Publishers: Dordrecht, vol. 72 (1996)Google Scholar
  61. 61.
    M. Nakano, M. Fukuda, T. Kudo, H. Endo, T. Handa, Determination of interbilayer and transbilayer lipid transfers by time-resolved small-angle neutron scattering. Phys. Rev. Lett. 98(23), 238101 (2007)Google Scholar
  62. 62.
    M. Nakano, M. Fukuda, T. Kudo, N. Matsuzaki, T. Azuma, K. Sekine, H. Endo, T. Handa, Flip-flop of phospholipids in vesicles: kinetic analysis with time-resolved small-angle neutron scattering. J. Phys. Chem. B 113(19), 6745–6748 (2009)Google Scholar
  63. 63.
    M.A. Nguyen, G. Taylor, S. Sarles, A microfluidic assembly and simultaneous interrogation of networks of asymmetric biomimetic membranes, in ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017, vol. 1, 2017Google Scholar
  64. 64.
    G.L. Nicolson, The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochimica et Biophysica Acta (BBA) – Biomembranes 6, 1451–1466 (2014)Google Scholar
  65. 65.
    N. Kučerka, M.-P. Nieh, J. Katsaras, Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta 1808, 2761–2771 (2011)Google Scholar
  66. 66.
    M. Otsuka, T. Matsumoto, R. Morimoto, S. Arioka, H. Omote, Y. Moriyama, A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. 102(50), 17923–17928 (2005)Google Scholar
  67. 67.
    S. Pautot, B.J. Frisken, D.A. Weitz, Engineering asymmetric vesicles. Proc. Natl. Acad. Sci. 100(19), 10718–10721 (2003)Google Scholar
  68. 68.
    Q. Lin, E. London, Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry. PLoS One 9(1), e87903 (2014)Google Scholar
  69. 69.
    J.E. Rothman, J. Lenard, Membrane asymmetry. Science, New Series 195(4280), 743–753 (1977)Google Scholar
  70. 70.
    S.S. Sheu, Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J. Gen. Physiol. 80(3), 325–351 (1982)Google Scholar
  71. 71.
    K. Simons, W.L. Vaz, Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33(1), 269–295 (2004)Google Scholar
  72. 72.
    C.E. Stanley, K.S. Elvira, X.Z. Niu, A.D. Gee, O. Ces, J.B. Edel, A.J. Demello, A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation. Chem. Commun. 46(10), 1620–1622 (2010)Google Scholar
  73. 73.
    C. Steenbergen, M.L. Hill, R.B. Jennings, Volume regulation and plasma membrane injury in aerobic, anaerobic, and ischemic myocardium in vitro. Effects of osmotic cell swelling on plasma membrane integrity. Circ. Res. 57(6), 864–875 (1985)Google Scholar
  74. 74.
    R. Takaoka, H. Kurosaki, H. Nakao, K. Ikeda, M. Nakano, Formation of asymmetric vesicles via phospholipase D-mediated transphosphatidylation. Biochim. Biophys. Acta Biomembr. 1860(2), 245–249 (2018)Google Scholar
  75. 75.
    K. Tanaka, K. Fujimura-Kamada, T. Yamamoto, Functions of phospholipid flippases. J. Biochem. 149(2), 131–143 (2011)Google Scholar
  76. 76.
    G.J. Taylor, S.A. Sarles, Model neural membrane droplet interface bilayers from brain total lipid extract for studying membrane-peptide interactions with amyloid, in MRS Proceedings, vol. 1722, 2015Google Scholar
  77. 77.
    K. Tsumoto, H. Matsuo, M. Tomita, T. Yoshimura, Efficient formation of giant liposomes through the gentle hydration of phosphatidylcholine films doped with sugar. Colloids Surf. B Biointerfaces 68(1), 98–105 (2009)Google Scholar
  78. 78.
    K. Uekama, F. Hirayama, T. Irie, Cyclodextrin drug carrier systems. Chem. Rev. 98(5), 2045–2076 (1998)Google Scholar
  79. 79.
    D. Van Swaay, A. Demello, Microfluidic methods for forming liposomes (2013). https://doi.org/10.1039/c2lc41121k
  80. 80.
    M.P. Veiga, Arrondo JLR, Goñi FM, A. Alonso, Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys. J. 76(1), 342–350 (1999)Google Scholar
  81. 81.
    A.J. Verkleij, R.F.A. Zwaal, B. Roelofsen, P. Comfurius, D. Kastelijn, L.L.M. van Deenen, The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta Biomembr. 323(2), 178–193 (1973)Google Scholar
  82. 82.
    J. Vicogne, D. Vollenweider, J.R. Smith, P. Huang, M.A. Frohman, J.E. Pessin, Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc. Natl. Acad. Sci. U. S. A. 103(40), 14761–14766 (2006)Google Scholar
  83. 83.
    M.L. Wagner, L.K. Tamm, Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys. J. 79(3), 1400–1414 (2000)Google Scholar
  84. 84.
    J. Weinberg, D.G. Drubin, Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol. 22(1), 1–13 (2012)Google Scholar
  85. 85.
    G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)Google Scholar
  86. 86.
    K.W. Wirtz, D.B. Zilversmit, Exchange of phospholipids between liver mitochondria and microsomes in vitro. J. Biol. Chem. 243(13), 3596–3602 (1968)Google Scholar
  87. 87.
    A. Zachowski, Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem. J. 294, 1–14 (1993)Google Scholar
  88. 88.
    Q. Zhou, J. Zhao, J.G. Stout, R.A. Luhm, T. Wiedmer, P.J. Sims, Molecular cloning of human plasma membrane phospholipid scramblase: a protein mediating transbilayer movement of plasma membrane phospholipids. J. Biol. Chem. 272(29), 18240–18244 (1997)Google Scholar
  89. 89.
    D.B. Zilversmit, Lipid transfer proteins: overview and applications. Methods Enzymol. 98(C), 565–573 (1983)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael H. L. Nguyen
    • 1
  • Brett W. Rickeard
    • 1
  • Mitchell DiPasquale
    • 1
  • Drew Marquardt
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryUniversity of WindsorWindsorCanada

Personalised recommendations