Advertisement

Applications of Lipid Membranes-based Biosensors for the Rapid Detection of Food Toxicants and Environmental Pollutants

  • Georgia-Paraskevi Nikoleli
  • Dimitrios P. NikolelisEmail author
  • Christina G. Siontorou
  • Marianna-Thalia Nikolelis
  • Stephanos Karapetis
Chapter

Abstract

The exploitation of lipid membranes in biosensors has provided the ability to reconstitute a considerable part of their functionality to detect trace of food toxicants and environmental pollutants. Nanotechnology enabled sensor miniaturization and extended the range of biological moieties that could be immobilized within a lipid bilayer device. This chapter reviews recent progress in biosensor technologies suitable for environmental applications and food quality monitoring. Numerous biosensing applications are presented, putting emphasis on novel systems, new sensing techniques, and nanotechnology-based transduction schemes. The range of analytes that can be currently detected include phenols, insecticides, pesticides, herbicides, heavy metals, toxins, allergens, antibiotics, microorganisms, hormones, dioxins, genetically modified foods, etc. Technology limitations and future prospects are discussed, focused on the commercialization capabilities of the proposed sensors.

Keywords

Biosensors Enzyme-based systems Antibody-based systems Receptor-based systems Toxins Food analysis Environmental monitoring Nanotechnology 

References

  1. 1.
    P. Mueller, D. O. Rudin, H. T. Tien, W. C. Wescott, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194, 979–980 (1962)CrossRefGoogle Scholar
  2. 2.
    H. T. Tien, Z. Salamon, Formation of self-assembled lipid bilayers on solid substrates. J. Electroanal. Chem. Interfacial Electrochem. 22, 211–218 (1989)CrossRefGoogle Scholar
  3. 3.
    G.-P. Nikoleli, D. Nikolelis, C. G. Siontorou, S. Karapetis, Lipid membrane nanosensors for environmental monitoring: The art, the opportunities, and the challenges. Sensors 18(1), 284 (2018)CrossRefGoogle Scholar
  4. 4.
    D.P. Nikolelis, C.G. Siontorou, U.J. Krull, P.L. Katrivanos, Ammonium ion minisensors from self-assembled bilayer lipid membranes using gramicidin as an ionophore. Modulation of ammonium selectivity by platelet-activating factor. Anal. Chem. 15, 1735–1741 (1996)CrossRefGoogle Scholar
  5. 5.
    C.G. Siontorou, D.P. Nikolelis, U.J. Krull, K.L. Chiang, A triazine herbicide minisensor based on surface-stabilized bilayer lipid membranes. Anal. Chem. 69, 3109–3114 (1997)CrossRefGoogle Scholar
  6. 6.
    T. Hianik, J. Dlugopolsky, M. Gyepessova, Electrostriction of lipid bilayers on a solid support. Influence of hydrocarbon solvent and d.c. voltage. Bioelectrochem. Bioenerg. 31, 99–111 (1993)CrossRefGoogle Scholar
  7. 7.
    T. Hianik, V.I. Passechnik, D.F. Sargent, J. Dlugopolsky, L. Sokolikova, Surface potentials and solvent redistribution may explain the dependence of electrical and mechanical properties of supported lipid bilayers on applied potential and bilayer history. Bioelectrochem. Bioenerg. 37, 61–68 (1995)CrossRefGoogle Scholar
  8. 8.
    V.I. Passechnik, T. Hianik, S.A. Ivanov, B. Sivak, Specific capacitance of metal supported lipid membranes. Electroanalysis 10, 295–302 (1998)CrossRefGoogle Scholar
  9. 9.
    D.P. Nikolelis, C.G. Siontorou, V.G. Andreou, U.J. Krull, Stabilized bilayer-lipid membranes for flow-through experiments. Electroanalysis 7, 531–536 (1995)CrossRefGoogle Scholar
  10. 10.
    V.G. Andreou, D.P. Nikolelis, Flow injection monitoring of aflatoxin M1 in milk and milk preparations using filter-supported bilayer lipid membranes. Anal. Chem. 70, 2366–2371 (1998)CrossRefGoogle Scholar
  11. 11.
    D. P. Nikolelis, G. Raftopoulou, G.-P. Nikoleli, M. Simantiraki, Stabilized lipid membrane based biosensors with incorporated enzyme for repetitive uses. Electroanalysis 18, 2467–2474 (2006)CrossRefGoogle Scholar
  12. 12.
    D.P. Nikolelis, G. Raftopoulou, P. Chatzigeorgiou, G.-P. Nikoleli, K. Viras, Optical portable biosensors based on stabilized lipid membrane for the rapid detection of doping materials in human urine. Sens. Actuators B Chem. 130, 577–582 (2008)CrossRefGoogle Scholar
  13. 13.
    G.-P. Nikoleli, M.Q. Israr, N. Tzamtzis, D.P. Nikolelis, M. Willander, N. Psaroudakis, Structural characterization of graphene nanosheets for miniaturization of potentiometric urea lipid film based biosensors. Electroanalysis 24, 1285–1295 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Bratakou, G.-P. Nikoleli, D.P. Nikolelis, N. Psaroudakis, Development of a potentiometric chemical sensor for the rapid detection of carbofuran based on air stable lipid films with incorporated calix[4]arene phosphoryl receptor using graphene electrodes. Electroanalysis 27, 2608–2613 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Bratakou, G.-P. Nikoleli, C.G. Siontorou, D.P. Nikolelis, N. Tzamtzis, Electrochemical biosensor for naphthalene acetic acid in fruits and vegetables based on lipid films with incorporated auxin-binding protein receptor using graphene electrodes. Electroanalysis 28, 2171–2177 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Karapetis, G.-P. Nikoleli, C.G. Siontorou, D.P. Nikolelis, N. Tzamtzis, N. Psaroudakis, Development of an electrochemical biosensor for the rapid detection of cholera toxin based on air stable lipid films with incorporated ganglioside GM1 using graphene electrodes. Electroanalysis 28, 1584–1590 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Bratakou, G.-P. Nikoleli, G.C. Siontorou, D.P. Nikolelis, S. Karapetis, N. Tzamtzis, Development of an electrochemical biosensor for the rapid detection of saxitoxin based on air stable lipid films with incorporated Anti-STX using graphene electrodes. Electroanalysis 29, 990–997 (2017)CrossRefGoogle Scholar
  18. 18.
    D.P. Nikolelis, M. Simantiraki, G.C. Siontorou, K. Toth, Flow injection analysis of carbofuran in foods using air stable lipid film based acetylcholinesterase biosensor. Anal. Chim. Acta 537, 169–177 (2005)CrossRefGoogle Scholar
  19. 19.
    D.P. Nikolelis, G. Raftopoulou, M. Simantiraki, N. Psaroudakis, G.-P. Nikoleli, T. Hianik, Preparation of a selective receptor for carbofuran for the development of a simple optical spot test for its rapid detection using stabilized in air lipid films with incorporated receptor. Anal. Chim. Acta 620, 134–141 (2008)CrossRefGoogle Scholar
  20. 20.
    D.P. Nikolelis, N. Ntanos, G.-P. Nikoleli, K. Tampouris, Development of an electrochemical biosensor for the rapid detection of naphthalene acetic acid in fruits by using air stable lipid films with incorporated auxin-binding protein 1 receptor. Protein Pept. Lett. 15, 789–794 (2008)CrossRefGoogle Scholar
  21. 21.
    S. Bratakou, G.-P. Nikoleli, C.G. Siontorou, S. Karapetis, D.P. Nikolelis, N. Tzamtzis, Electrochemical biosensor for naphthalene acetic acid in fruits and vegetables based on lipid films with incorporated auxin-binding protein receptor using graphene electrodes. Electroanalysis 28, 2171–2177 (2016)CrossRefGoogle Scholar
  22. 22.
    G.-P. Nikoleli, C.G. Siontorou, D.P. Nikolelis, S. Bratakou, S. Karapetis, N. Tzamtzis, Biosensors based on lipid modified graphene microelectrodes. Carbon 3(1), 9 (2017). https://doi.org/10.3390/c3010009 CrossRefGoogle Scholar
  23. 23.
    D.P. Nikolelis, G. Raftopoulou, N. Psaroudakis, G.-P. Nikoleli, Development of an electrochemical chemosensor for the rapid detection of zinc based on air stable lipid films with incorporated calix4arene phosphoryl receptor. Int. J. Environ. Anal. Chem. 89, 211–222 (2009)CrossRefGoogle Scholar
  24. 24.
    D.P. Nikolelis, V.G. Andreou, Electrochemical transduction of interactions of atrazine with bilayer lipid membranes. Electroanalysis 8, 643–647 (2005)CrossRefGoogle Scholar
  25. 25.
    D.P. Nikolelis, C.G. Siontorou, Flow injection monitoring and analysis of mixtures of simazine, atrazine, and propazine using filter-supported bilayer lipid membranes (BLMs). Electroanalysis 8, 907–912 (1996)CrossRefGoogle Scholar
  26. 26.
    C.G. Siontorou, D.P. Nikolelis, B. Tarus, J. Dumbrava, U.J. Krull, DNA biosensor based on self-assembled bilayer lipid membranes for the detection of hydrazines. Electroanalysis 10, 691–694 (1998)CrossRefGoogle Scholar
  27. 27.
    G.-P. Nikoleli, D.P. Nikolelis, N. Tzamtzis, Development of an electrochemical biosensor for the rapid detection of cholera toxin using air stable lipid films with incorporated ganglioside GM1. Electroanalysis 23(9), 2182–2189 (2011)CrossRefGoogle Scholar
  28. 28.
    A.I. Michaloliakos, G.-P. Nikoleli, C.G. Siontorou, D.P. Nikolelis, Rapid flow injection electrochemical detection of aroclor 1242 using stabilized lipid membranes with incorporated sheep anti-PCB antibody. Electroanalysis 24, 495–501 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Georgia-Paraskevi Nikoleli
    • 1
  • Dimitrios P. Nikolelis
    • 2
    Email author
  • Christina G. Siontorou
    • 3
  • Marianna-Thalia Nikolelis
    • 2
  • Stephanos Karapetis
    • 1
  1. 1.Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, Department 1, Chemical Sciences, National Technical University of AthensAthensGreece
  2. 2.Laboratory of Environmental Chemistry, Department of Chemistry, University of AthensAthensGreece
  3. 3.Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industry, University of PiraeusPiraeusGreece

Personalised recommendations