Structural and Mechanical Characterization of Supported Model Membranes by AFM

  • Berta Gumí-Audenis
  • Marina I. GiannottiEmail author


Several cellular processes, including adhesion, signaling and transcription, endocytosis, and membrane resealing, among others, involve conformational changes such as bending, vesiculation, and tubulation. These mechanisms generally involve membrane separation from the cytoskeleton as well as strong bending, for which the membrane chemical composition and physicochemical properties, often highly localized and dynamic, are key players. The mechanical role of the lipid membrane in force triggered (or sensing) mechanisms in cells is important, and understanding the lipid bilayers’ physical and mechanical properties is essential to comprehend their contribution to the overall membrane. Atomic force microscopy (AFM)-based experimental approaches have been to date very valuable to deepen into these aspects. As a stand-alone, high-resolution imaging technique and force transducer with the possibility to operate in aqueous environment, it defies most other surface instrumentation in ease of use, sensitivity and versatility. In this chapter, we introduce the different AFM-based methods to assess topological and nanomechanical information on model membranes, specifically to supported lipid bilayers (SLBs), including several examples ranging from pure phospholipid homogeneous bilayers to multicomponent and phase-separated SLBs, increasing the bilayer complexity, in the direction of mimicking biological membranes.


Atomic force microscopy Force spectroscopy Model membranes Nanomechanics Supported lipid bilayers 


  1. 1.
    G. van Meer, A.I.P.M. de Kroon, Lipid map of the mammalian cell. J. Cell Sci. 124, 5 (2011)CrossRefGoogle Scholar
  2. 2.
    D. Lingwood, K. Simons, Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010)CrossRefGoogle Scholar
  3. 3.
    K. Simons, W.L.C. Vaz, Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. 33, 269–295 (2004)CrossRefGoogle Scholar
  4. 4.
    G. van Meer, D.R. Voelker, G.W. Feigenson, Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008)CrossRefGoogle Scholar
  5. 5.
    M.P. Sheetz, Cell control by membrane-cytoskeleton adhesion. Nat. Rev. Mol. Cell Biol. 2, 392 (2001)CrossRefGoogle Scholar
  6. 6.
    J.-Y. Shao, H.P. Ting-Beall, R.M. Hochmuth, Static and dynamic lengths of neutrophil microvilli. Proc. Natl. Acad. Sci. 95, 6797 (1998)CrossRefGoogle Scholar
  7. 7.
    D.W. Schmidtke, S.L. Diamond, Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. J. Cell Biol. 149, 719 (2000)CrossRefGoogle Scholar
  8. 8.
    V. Vogel, Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. 35, 459–488 (2006)CrossRefGoogle Scholar
  9. 9.
    K. Bacia, P. Schwille, T. Kurzchalia, Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. U. S. A. 102, 3272 (2005)CrossRefGoogle Scholar
  10. 10.
    E. Evans, V. Heinrich, F. Ludwig, W. Rawicz, Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85, 2342–2350 (2003)CrossRefGoogle Scholar
  11. 11.
    N. Kahya, D. Scherfeld, K. Bacia, P. Schwille, Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy. J. Struct. Biol. 147, 77–89 (2004)CrossRefGoogle Scholar
  12. 12.
    N. Kahya, Protein–protein and protein–lipid interactions in domain-assembly: lessons from giant unilamellar vesicles. Biochim. Biophys. Acta Biomembr. 2010(1798), 1392–1398 (2010)CrossRefGoogle Scholar
  13. 13.
    M.I. Angelova, I. Tsoneva, Interactions of DNA with giant liposomes. Chem. Phys. Lipids 101, 123–137 (1999)CrossRefGoogle Scholar
  14. 14.
    E. Sezgin, H.-J. Kaiser, T. Baumgart, P. Schwille, K. Simons, I. Levental, Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 7, 1042 (2012)CrossRefGoogle Scholar
  15. 15.
    E. Sezgin, I. Levental, S. Mayor, C. Eggeling, The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361 (2017)CrossRefGoogle Scholar
  16. 16.
    E.T. Castellana, P.S. Cremer, Solid supported lipid bilayers: from biophysical studies to sensor design. Surf. Sci. Rep. 61, 429–444 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Garcia-Manyes, L. Redondo-Morata, G. Oncins, F. Sanz, Nanomechanics of lipid bilayers: heads or tails? J. Am. Chem. Soc. 132, 12874–12886 (2010)CrossRefGoogle Scholar
  18. 18.
    B. Gumí-Audenis, L. Costa, F. Carlà, F. Comin, F. Sanz, I.M. Giannotti, Structure and nanomechanics of model membranes by atomic force microscopy and spectroscopy: insights into the role of cholesterol and sphingolipids. Membranes 6, 58 (2016)CrossRefGoogle Scholar
  19. 19.
    M.-C. Giocondi, D. Yamamoto, E. Lesniewska, P.-E. Milhiet, T. Ando, C. Le Grimellec, Surface topography of membrane domains. Biochim. Biophys. Acta Biomembr. 1798, 703–718 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Alessandrini, P. Facci, Unraveling lipid/protein interaction in model lipid bilayers by atomic force microscopy. J. Mol. Recognit. 24, 387–396 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Morandat, K. El Kirat, Real-time atomic force microscopy reveals cytochrome c-induced alterations in neutral lipid bilayers. Langmuir 23, 10929–10932 (2007)CrossRefGoogle Scholar
  22. 22.
    R. Tero, K. Fukumoto, T. Motegi, M. Yoshida, M. Niwano, A. Hirano-Iwata, Formation of cell membrane component domains in artificial lipid bilayer. Sci. Rep. 7, 17905 (2017)CrossRefGoogle Scholar
  23. 23.
    S.J. Attwood, Y. Choi, Z. Leonenko, Preparation of DOPC and DPPC supported planar lipid bilayers for atomic force microscopy and atomic force spectroscopy. Int. J. Mol. Sci. 14, 3514–3539 (2013)CrossRefGoogle Scholar
  24. 24.
    L. Redondo-Morata, M.I. Giannotti, F. Sanz, AFM-based force-clamp monitors lipid bilayer failure kinetics. Langmuir 28, 6403–6410 (2012)CrossRefGoogle Scholar
  25. 25.
    L. Redondo-Morata, M.I. Giannotti, F. Sanz, Influence of cholesterol on the phase transition of lipid bilayers: a temperature-controlled force spectroscopy study. Langmuir 28, 12851–12860 (2012)CrossRefGoogle Scholar
  26. 26.
    H.M. Seeger, A.D. Cerbo, A. Alessandrini, P. Facci, Supported lipid bilayers on mica and silicon oxide: comparison of the main phase transition behavior. J. Phys. Chem. B 114, 8926–8933 (2010)CrossRefGoogle Scholar
  27. 27.
    T. Motegi, K. Yamazaki, T. Ogino, R. Tero, Substrate-induced structure and molecular dynamics in a lipid bilayer membrane. Langmuir 33, 14748–14755 (2017)CrossRefGoogle Scholar
  28. 28.
    B. Gumí-Audenis, L. Costa, L. Ferrer-Tasies, I. Ratera, N. Ventosa, F. Sanz, M.I. Giannotti, Pulling lipid tubes from supported bilayers unveils the underlying substrate contribution to the membrane mechanics. Nanoscale 10, 14763–14770 (2018)CrossRefGoogle Scholar
  29. 29.
    I. Mey, M. Stephan, E.K. Schmitt, M.M. Müller, M. Ben Amar, C. Steinem, A. Janshoff, Local membrane mechanics of pore-spanning bilayers. J. Am. Chem. Soc. 131, 7031–7039 (2009)CrossRefGoogle Scholar
  30. 30.
    H.L. Smith, M.S. Jablin, A. Vidyasagar, J. Saiz, E. Watkins, R. Toomey, A.J. Hurd, et al., Model lipid membranes on a tunable polymer cushion. Phys. Rev. Lett. 102, 228102 (2009)CrossRefGoogle Scholar
  31. 31.
    J. Relat-Goberna, E.M. Beedle Amy, S. Garcia-Manyes, The nanomechanics of lipid multibilayer stacks exhibits complex dynamics. Small 13, 1700147 (2017)CrossRefGoogle Scholar
  32. 32.
    X. Han, S. Achalkumar Ammathnadu, R. Cheetham Matthew, D.A. Connell Simon, R.G. Johnson Benjamin, J. Bushby Richard, D. Evans Stephen, A self-assembly route for double bilayer lipid membrane formation. ChemPhysChem 11, 569–574 (2010)CrossRefGoogle Scholar
  33. 33.
    S.R. Tabaei, P. Jönsson, M. Brändén, F. Höök, Self-assembly formation of multiple DNA-tethered lipid bilayers. J. Struct. Biol. 168, 200–206 (2009)CrossRefGoogle Scholar
  34. 34.
    R. Glazier, K. Salaita, Supported lipid bilayer platforms to probe cell mechanobiology. Biochim. Biophys. Acta Biomembr. 1859, 1465–1482 (2017)CrossRefGoogle Scholar
  35. 35.
    L.K. Tamm, H.M. McConnell, Supported phospholipid bilayers. Biophys. J. 47, 105–113 (1985)CrossRefGoogle Scholar
  36. 36.
    T.D. Osborn, P. Yager, Formation of planar solvent-free phospholipid bilayers by Langmuir-Blodgett transfer of monolayers to micromachined apertures in silicon. Langmuir 11, 8–12 (1995)CrossRefGoogle Scholar
  37. 37.
    H.R. Motschmann, T.L. Penner, N.J. Armstrong, M.C. Ezenyilimba, Additive second-order nonlinear susceptibilities in Langmuir-Blodgett multibilayers: testing the oriented gas model. J. Phys. Chem. 97, 3933–3936 (1993)CrossRefGoogle Scholar
  38. 38.
    L. Picas, C. Suárez-Germà, M. Teresa Montero, J. Hernández-Borrell, Force spectroscopy study of Langmuir−Blodgett asymmetric bilayers of phosphatidylethanolamine and phosphatidylglycerol. J. Phys. Chem. B 114, 3543–3549 (2010)CrossRefGoogle Scholar
  39. 39.
    U. Mennicke, T. Salditt, Preparation of solid-supported lipid bilayers by spin-coating. Langmuir 18, 8172–8177 (2012)CrossRefGoogle Scholar
  40. 40.
    M.P. Mingeot-Leclercq, M. Deleu, R. Brasseur, Y.F. Dufrene, Atomic force microscopy of supported lipid bilayers. Nat. Protoc. 3, 1654–1659 (2008)CrossRefGoogle Scholar
  41. 41.
    E. Reimhult, F. Hook, B. Kasemo, Intact vesicle adsorption and supported biomembrane formation from vesicles in solution: influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir 19, 1681–1691 (2003)CrossRefGoogle Scholar
  42. 42.
    R.P. Richter, A.R. Brisson, Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry. Biophys. J. 88, 3422–3433 (2005)CrossRefGoogle Scholar
  43. 43.
    B. Gumi-Audenis, L. Costa, L. Redondo-Morata, P.-E. Milhiet, F. Sanz, R. Felici, M.I. Giannotti, et al., In-plane molecular organization of hydrated single lipid bilayers: DPPC: cholesterol. Nanoscale 10, 87–92 (2018)CrossRefGoogle Scholar
  44. 44.
    S.-E. Choi, K. Greben, R. Wördenweber, A. Offenhäusser, Positively charged supported lipid bilayer formation on gold surfaces for neuronal cell culture. Biointerphases 11, 021003 (2016)CrossRefGoogle Scholar
  45. 45.
    G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)CrossRefGoogle Scholar
  46. 46.
    Y.F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-Martin, A. Engel, C. Gerber, et al., Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295 (2017)CrossRefGoogle Scholar
  47. 47.
    P. Parot, Y.F. Dufrêne, P. Hinterdorfer, C. Le Grimellec, D. Navajas, J.L. Pellequer, S. Scheuring, Past, present and future of atomic force microscopy in life sciences and medicine. J. Mol. Recognit. 20, 418–431 (2007)CrossRefGoogle Scholar
  48. 48.
    L. Redondo-Morata, M.I. Giannotti, F. Sanz, Structural impact of cations on lipid bilayer models: nanomechanical properties by AFM-force spectroscopy. Mol. Membr. Biol. 31, 17–28 (2014)CrossRefGoogle Scholar
  49. 49.
    K. El Kirat, S. Morandat, Y.F. Dufrene, Nanoscale analysis of supported lipid bilayers using atomic force microscopy. BBA-Biomembranes 1798, 750–765 (2010)CrossRefGoogle Scholar
  50. 50.
    S. Morandat, S. Azouzi, E. Beauvais, A. Mastouri, K. El Kirat, Atomic force microscopy of model lipid membranes. Anal. Bioanal. Chem. 405, 1445–1461 (2013)CrossRefGoogle Scholar
  51. 51.
    B.E. Mierzwa, N. Chiaruttini, L. Redondo-Morata, J. Moser von Filseck, J. König, J. Larios, I. Poser, et al., Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat. Cell Biol. 19, 787 (2017)CrossRefGoogle Scholar
  52. 52.
    A. Toshio, High-speed atomic force microscopy coming of age. Nanotechnology 23, 062001 (2012)CrossRefGoogle Scholar
  53. 53.
    F. Eghiaian, F. Rico, A. Colom, I. Casuso, S. Scheuring, High-speed atomic force microscopy: imaging and force spectroscopy. FEBS Lett. 588, 3631–3638 (2014)CrossRefGoogle Scholar
  54. 54.
    T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, A. Toda, A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl. Acad. Sci. 98, 12468 (2001)CrossRefGoogle Scholar
  55. 55.
    M.B. Viani, T.E. Schäffer, G.T. Paloczi, L.I. Pietrasanta, B.L. Smith, J.B. Thompson, M. Richter, et al., Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev. Sci. Instrum. 70, 4300–4303 (1999)CrossRefGoogle Scholar
  56. 56.
    D.J. Müller, A. Engel, Atomic force microscopy and spectroscopy of native membrane proteins. Nat. Protoc. 2, 2191 (2007)CrossRefGoogle Scholar
  57. 57.
    S. Scheuring, Y.F. Dufrene, Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution. Mol. Microbiol. 75, 1327–1336 (2010)CrossRefGoogle Scholar
  58. 58.
    D. Tranchida, S. Piccarolo, M. Soliman, Nanoscale mechanical characterization of polymers by AFM nanoindentations: critical approach to the elastic characterization. Macromolecules 39, 4547–4556 (2006)CrossRefGoogle Scholar
  59. 59.
    K. Sangwal, P. Gorostiza, J. Servat, F. Sanz, Atomic force microscopy study of nanoindentation deformation and indentation size effect in MgO crystals. J. Mater. Res. 14, 3973–3982 (1999)CrossRefGoogle Scholar
  60. 60.
    J. Fraxedas, S. Garcia-Manyes, P. Gorostiza, F. Sanz, Nanoindentation: toward the sensing of atomic interactions. Proc. Natl. Acad. Sci. U. S. A. 99, 5228–5232 (2002)CrossRefGoogle Scholar
  61. 61.
    M.E. Dokukin, I. Sokolov, Quantitative mapping of the elastic modulus of soft materials with harmonix and peakforce QNM AFM modes. Langmuir 28, 16060–16071 (2012)CrossRefGoogle Scholar
  62. 62.
    M.I. Giannotti, G.J. Vancso, Interrogation of single synthetic polymer chains and polysaccharides by AFM-based force spectroscopy. ChemPhysChem 8, 2290–2307 (2007)CrossRefGoogle Scholar
  63. 63.
    X. Zhang, C. Liu, Z. Wang, Force spectroscopy of polymers: studying on intramolecular and intermolecular interactions in single molecular level. Polymer 49, 3353–3361 (2008)CrossRefGoogle Scholar
  64. 64.
    M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, H.E. Gaub, How strong is a covalent bond. Science 283, 1727 (1999)CrossRefGoogle Scholar
  65. 65.
    P.E. Marszalek, H. Li, J.M. Fernandez, Fingerprinting polysaccharides with single-molecule atomic force microscopy. Nat. Biotechnol. 19, 258–262 (2001)CrossRefGoogle Scholar
  66. 66.
    P.E. Marszalek, Y.F. Dufrêne, Stretching single polysaccharides and proteins using atomic force microscopy. Chem. Soc. Rev. 41, 3523–3534 (2012)CrossRefGoogle Scholar
  67. 67.
    T.E. Fisher, A.F. Oberhauser, M. Carrion-Vazquez, P.E. Marszalek, J.M. Fernandez, The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379–384 (1999)CrossRefGoogle Scholar
  68. 68.
    F. Rico, L. Gonzalez, I. Casuso, M. Puig-Vidal, S. Scheuring, High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. Science 342, 741 (2013)CrossRefGoogle Scholar
  69. 69.
    J.M. Fernandez, H.B. Li, Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004)CrossRefGoogle Scholar
  70. 70.
    G.U. Lee, L.A. Chrisey, R.J. Colton, Direct measurement of the forces between complementary strands of DN. Science 266, 771 (1994)CrossRefGoogle Scholar
  71. 71.
    Y.F. Dufrêne, G.U. Lee, Advances in the characterization of supported lipid films with the atomic force microscope. Biochim. Biophys. Acta Biomembr. 1509, 14–41 (2000)CrossRefGoogle Scholar
  72. 72.
    S. Garcia-Manyes, F. Sanz, Nanomechanics of lipid bilayers by force spectroscopy with AFM: a perspective. Biochim. Biophys. Acta Biomembr. 1798, 741–749 (2010)CrossRefGoogle Scholar
  73. 73.
    L. Picas, P.-E. Milhiet, J. Hernández-Borrell, Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem. Phys. Lipids 165, 845–860 (2012)CrossRefGoogle Scholar
  74. 74.
    Z. Leonenko, D. Cramb, M. Amrein, E. Finot, Atomic force microscopy: interaction forces measured in phospholipid monolayers, bilayers, and cell membranes, in Applied Scanning Probe Methods IX, ed. by M. Tomitori, B. Bhushan, H. Fuchs, (Springer, Berlin/Heidelberg, 2008), pp. 207–234CrossRefGoogle Scholar
  75. 75.
    L. Picas, F. Rico, S. Scheuring, Direct measurement of the mechanical properties of lipid phases in supported bilayers. Biophys. J. 102, L1–L3 (2012)CrossRefGoogle Scholar
  76. 76.
    S. Garcia-Manyes, G. Oncins, F. Sanz, Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. Biophys. J. 89, 1812–1826 (2005)CrossRefGoogle Scholar
  77. 77.
    S. Garcia-Manyes, G. Oncins, F. Sanz, Effect of temperature on the nanomechanics of lipid bilayers studied by force spectroscopy. Biophys. J. 89, 4261–4274 (2005)CrossRefGoogle Scholar
  78. 78.
    S. Garcia-Manyes, G. Oncins, F. Sanz, Effect of pH and ionic strength on phospholipid nanomechanics and on deposition process onto hydrophilic surfaces measured by AFM. Electrochim. Acta 51, 5029–5036 (2006)CrossRefGoogle Scholar
  79. 79.
    M.H. Abdulreda, V.T. Moy, Atomic force microscope studies of the fusion of floating lipid bilayers. Biophys. J. 92, 4369–4378 (2007)CrossRefGoogle Scholar
  80. 80.
    R.M.A. Sullan, J.K. Li, S. Zou, Direct correlation of structures and nanomechanical properties of multicomponent lipid bilayers. Langmuir 25, 7471–7477 (2009)CrossRefGoogle Scholar
  81. 81.
    J.K. Li, R.M.A. Sullan, S. Zou, Atomic force microscopy force mapping in the study of supported lipid bilayers. Langmuir 27, 1308–1313 (2011)CrossRefGoogle Scholar
  82. 82.
    E. Evans, Probing the relation between force – lifetime – and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. 30, 105–128 (2001)CrossRefGoogle Scholar
  83. 83.
    H.J. Butt, V. Franz, Rupture of molecular thin films observed in atomic force microscopy. I. Theory. Phys. Rev. E 66, 031601 (2002)CrossRefGoogle Scholar
  84. 84.
    B. Heymann, H. Grubmüller, Dynamic force spectroscopy of molecular adhesion bonds. Phys. Rev. Lett. 84, 6126–6129 (2000)CrossRefGoogle Scholar
  85. 85.
    D.F.J. Tees, R.E. Waugh, D.A. Hammer, A microcantilever device to assess the effect of force on the lifetime of selectin-carbohydrate bonds. Biophys. J. 80, 668–682 (2001)CrossRefGoogle Scholar
  86. 86.
    N.S. Zhurkov, Kinetic concept of the strength of solids. Int. J. Fract. 26, 295 (1984)CrossRefGoogle Scholar
  87. 87.
    S. Loi, G. Sun, V. Franz, H.J. Butt, Rupture of molecular thin films observed in atomic force microscopy. II. Experiment. Phys. Rev. E 66, 031602 (2002)CrossRefGoogle Scholar
  88. 88.
    A.F. Oberhauser, P.K. Hansma, M. Carrion-Vazquez, J.M. Fernandez, Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc. Natl. Acad. Sci. U. S. A. 98, 468–472 (2001)CrossRefGoogle Scholar
  89. 89.
    P.E. Marszalek, H.B. Li, A.F. Oberhauser, J.M. Fernandez, Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proc. Natl. Acad. Sci. U. S. A. 99, 4278–4283 (2002)CrossRefGoogle Scholar
  90. 90.
    W.D. Marcus, R.M. Hochmuth, Experimental studies of membrane tethers formed from human neutrophils. Ann. Biomed. Eng. 30, 1273–1280 (2002)CrossRefGoogle Scholar
  91. 91.
    F. Brochard-Wyart, N. Borghi, D. Cuvelier, P. Nassoy, Hydrodynamic narrowing of tubes extruded from cells. Proc. Natl. Acad. Sci. 103, 7660 (2006)CrossRefGoogle Scholar
  92. 92.
    S. Nawaz, P. Sánchez, S. Schmitt, N. Snaidero, M. Mitkovski, C. Velte, R. Brückner Bastian, et al., Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev. Cell 34, 139–151 (2015)CrossRefGoogle Scholar
  93. 93.
    M. Sun, J.S. Graham, B. Hegedüs, F. Marga, Y. Zhang, G. Forgacs, M. Grandbois, Multiple membrane tethers probed by atomic force microscopy. Biophys. J. 89, 4320–4329 (2005)CrossRefGoogle Scholar
  94. 94.
    J. Friedrichs, K.R. Legate, R. Schubert, M. Bharadwaj, C. Werner, D.J. Müller, M. Benoit, A practical guide to quantify cell adhesion using single-cell force spectroscopy. Methods 60, 169–178 (2013)CrossRefGoogle Scholar
  95. 95.
    J.W. Armond, J.V. Macpherson, M.S. Turner, Pulling nanotubes from supported bilayers. Langmuir 27, 8269–8274 (2011)CrossRefGoogle Scholar
  96. 96.
    N. Maeda, T.J. Senden, J.-M. di Meglio, Micromanipulation of phospholipid bilayers by atomic force microscopy. Biochim. Biophys. Acta Biomembr. 1564, 165–172 (2002)CrossRefGoogle Scholar
  97. 97.
    J. Dai, M.P. Sheetz, Membrane tether formation from blebbing cells. Biophys. J. 77, 3363–3370 (1999)CrossRefGoogle Scholar
  98. 98.
    P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26, 61–81 (1970)CrossRefGoogle Scholar
  99. 99.
    J. Daillant, E. Bellet-Amalric, A. Braslau, T. Charitat, G. Fragneto, F. Graner, S. Mora, et al., Structure and fluctuations of a single floating lipid bilayer. Proc. Natl. Acad. Sci. U. S. A. 102, 11639 (2005)CrossRefGoogle Scholar
  100. 100.
    F.M. Hochmuth, J.Y. Shao, J. Dai, M.P. Sheetz, Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys. J. 70, 358–369 (1996)CrossRefGoogle Scholar
  101. 101.
    A. Roux, The physics of membrane tubes: soft templates for studying cellular membranes. Soft Matter 9, 6726–6736 (2013)CrossRefGoogle Scholar
  102. 102.
    E. Evans, A. Yeung, Hidden dynamics in rapid changes of bilayer shape. Chem. Phys. Lipids 73, 39–56 (1994)CrossRefGoogle Scholar
  103. 103.
    A. Martín-Molina, C. Rodríguez-Beas, J. Faraudo, Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations. Biophys. J. 102, 2095–2103 (2012)CrossRefGoogle Scholar
  104. 104.
    L. Redondo-Morata, G. Oncins, F. Sanz, Force spectroscopy reveals the effect of different ions in the nanomechanical behavior of phospholipid model membranes: the case of potassium cation. Biophys. J. 102, 66–74 (2012)CrossRefGoogle Scholar
  105. 105.
    J. Kwik, S. Boyle, D. Fooksman, L. Margolis, M.P. Sheetz, M. Edidin, Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc. Natl. Acad. Sci. 100, 13964 (2003)CrossRefGoogle Scholar
  106. 106.
    P. Jedlovszky, M. Mezei, Effect of cholesterol on the properties of phospholipid membranes. 2. Free energy profile of small molecules. J. Phys. Chem. B 107, 5322–5332 (2003)CrossRefGoogle Scholar
  107. 107.
    R.A. Cooper, Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells. J. Supramol. Struct. Cell 8, 413–430 (1978)CrossRefGoogle Scholar
  108. 108.
    J. Pan, T.T. Mills, S. Tristram-Nagle, J.F. Nagle, Cholesterol perturbs lipid bilayers nonuniversally. Phys. Rev. Lett. 100, 198103 (2008)CrossRefGoogle Scholar
  109. 109.
    T. Rog, M. Pasenkiewicz-Gierula, I. Vattulainen, M. Karttunen, Ordering effects of cholesterol and its analogues. Biochim. Biophys. Acta Biomembr. 1788, 97–121 (2009)CrossRefGoogle Scholar
  110. 110.
    W.-C. Hung, M.-T. Lee, F.-Y. Chen, H.W. Huang, The condensing effect of cholesterol in lipid bilayers. Biophys. J. 92, 3960–3967 (2007)CrossRefGoogle Scholar
  111. 111.
    Z. Leonenko, E. Finot, V. Vassiliev, M. Amrein, Effect of cholesterol on the physical properties of pulmonary surfactant films: atomic force measurements study. Ultramicroscopy 106, 687–694 (2006)CrossRefGoogle Scholar
  112. 112.
    T.P.W. McMullen, R.N. McElhaney, New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. Biochim. Biophys. Acta Biomembr. 1234, 90–98 (1995)CrossRefGoogle Scholar
  113. 113.
    S. Karmakar, V.A. Raghunathan, S. Mayor, Phase behaviour of dipalmitoyl phosphatidylcholine (DPPC)-cholesterol membranes. J. Phys. Condens. Matter 17, S1177–S1182 (2005)CrossRefGoogle Scholar
  114. 114.
    Y.-W. Chiang, A.J. Costa, J.H. Freed, Dynamic molecular structure and phase diagram of DPPC-cholesterol binary mixtures: a 2D-ELDOR study. J. Phys. Chem. B 111, 11260–11270 (2007)CrossRefGoogle Scholar
  115. 115.
    D. Marsh, Liquid-ordered phases induced by cholesterol: a compendium of binary phase diagrams. Biochim. Biophys. Acta Biomembr. 1798, 688–699 (2010)CrossRefGoogle Scholar
  116. 116.
    P.F. Almeida, A simple thermodynamic model of the liquid-ordered state and the interactions between phospholipids and cholesterol. Biophys. J. 100, 420–429 (2011)CrossRefGoogle Scholar
  117. 117.
    D. Marquardt, F.A. Heberle, J.D. Nickels, G. Pabst, J. Katsaras, On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons. Soft Matter 11, 9055–9072 (2015)CrossRefGoogle Scholar
  118. 118.
    R.M.A. Sullan, J.K. Li, C.C. Hao, G.C. Walker, S. Zou, Cholesterol-dependent nanomechanical stability of phase-segregated multicomponent lipid bilayers. Biophys. J. 99, 507–516 (2010)CrossRefGoogle Scholar
  119. 119.
    L.M. Lima, M.I. Giannotti, L. Redondo-Morata, M.L. Vale, E.F. Marques, F. Sanz, Morphological and nanomechanical behavior of supported lipid bilayers on addition of cationic surfactants. Langmuir 29, 9352–9361 (2013)CrossRefGoogle Scholar
  120. 120.
    B. Gumi-Audenis, F. Sanz, M.I. Giannotti, Impact of galactosylceramides on the nanomechanical properties of lipid bilayer models: an AFM-force spectroscopy study. Soft Matter 11, 5447–5454 (2015)CrossRefGoogle Scholar
  121. 121.
    P.M. Winkler, R. Regmi, V. Flauraud, J. Brugger, H. Rigneault, J. Wenger, M.F. García-Parajo, Transient nanoscopic phase separation in biological lipid membranes resolved by planar plasmonic antennas. ACS Nano 11, 7241–7250 (2017)CrossRefGoogle Scholar
  122. 122.
    M. Javanainen, H. Martinez-Seara, I. Vattulainen, Nanoscale membrane domain formation driven by cholesterol. Sci. Rep. 7, 1143 (2017)CrossRefGoogle Scholar
  123. 123.
    R. Ziblat, K. Kjaer, L. Leiserowitz, L. Addadi, Structure of cholesterol/lipid ordered domains in monolayers and single hydrated bilayers. Angew. Chem. Int. Ed. 48, 8958–8961 (2009)CrossRefGoogle Scholar
  124. 124.
    C.E. Miller, J. Majewski, E.B. Watkins, D.J. Mulder, T. Gog, T.L. Kuhl, Probing the local order of single phospholipid membranes using grazing incidence X-ray diffraction. Phys. Rev. Lett. 100, 058103 (2008)CrossRefGoogle Scholar
  125. 125.
    K. Zhou, T. Blom, Trafficking and functions of bioactive sphingolipids: lessons from cells and model membranes. Lipid Insights 8, 11–20 (2015)Google Scholar
  126. 126.
    F.M. Goñi, A. Alonso, Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim. Biophys. Acta Biomembr. 1758, 1902–1921 (2006)CrossRefGoogle Scholar
  127. 127.
    C.R. Bollinger, V. Teichgräber, E. Gulbins, Ceramide-enriched membrane domains. Biochim. Biophys. Acta, Mol. Cell Res. 1746, 284–294 (2005)CrossRefGoogle Scholar
  128. 128.
    X. Han, H. Cheng, Characterization and direct quantitation of cerebroside molecular species from lipid extracts by shotgun lipidomics. J. Lipid Res. 46, 163–175 (2005)CrossRefGoogle Scholar
  129. 129.
    W. Curatolo, The physical properties of glycolipids. Biochim. Biophys. Acta Rev. Biomembr. 906, 111–136 (1987)CrossRefGoogle Scholar
  130. 130.
    S. Chiantia, J. Ries, N. Kahya, P. Schwille, Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. ChemPhysChem 7, 2409–2418 (2006)CrossRefGoogle Scholar
  131. 131.
    F. Guyomarc’h, S. Zou, M. Chen, P.-E. Milhiet, C. Godefroy, V. Vié, C. Lopez, Milk sphingomyelin domains in biomimetic membranes and the role of cholesterol: morphology and nanomechanical properties investigated using AFM and force spectroscopy. Langmuir 30, 6516–6524 (2014)CrossRefGoogle Scholar
  132. 132.
    A.V.R. Murthy, F. Guyomarc'h, C. Lopez, The temperature-dependent physical state of polar lipids and their miscibility impact the topography and mechanical properties of bilayer models of the milk fat globule membrane. Biochim. Biophys. Acta Biomembr. 1858, 2181–2190 (2016)CrossRefGoogle Scholar
  133. 133.
    A.V.R. Murthy, F. Guyomarc’h, C. Lopez, Cholesterol decreases the size and the mechanical resistance to rupture of sphingomyelin rich domains, in lipid bilayers studied as a model of the milk fat globule membrane. Langmuir 32, 6757–6765 (2016)CrossRefGoogle Scholar
  134. 134.
    A.V.R. Murthy, F. Guyomarc'h, C. Lopez, Palmitoyl ceramide promotes milk sphingomyelin gel phase domains formation and affects the mechanical properties of the fluid phase in milk-SM/DOPC supported membranes. Biochim. Biophys. Acta Biomembr. 1860, 635–644 (2018)CrossRefGoogle Scholar
  135. 135.
    S. Chiantia, N. Kahya, J. Ries, P. Schwille, Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys. J. 90, 4500–4508 (2006)CrossRefGoogle Scholar
  136. 136.
    S. Zou, L.J. Johnston, Ceramide-enriched microdomains in planar membranes. Curr. Opin. Colloid Interface Sci. 15, 489–498 (2010)CrossRefGoogle Scholar
  137. 137.
    R.M.A. Sullan, J.K. Li, S. Zou, Quantification of the nanomechanical stability of ceramide-enriched domains. Langmuir 25, 12874–12877 (2009)CrossRefGoogle Scholar
  138. 138.
    L.E. Megha, Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J. Biol. Chem. 279, 9997–10004 (2004)CrossRefGoogle Scholar
  139. 139.
    S. Chiantia, N. Kahya, P. Schwille, Raft domain reorganization driven by short- and long-chain ceramide: a combined AFM and FCS study. Langmuir 23, 7659–7665 (2007)CrossRefGoogle Scholar
  140. 140.
    M.R. Ali, K.H. Cheng, J. Huang, Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures. Biochemistry-US 45, 12629–12638 (2006)CrossRefGoogle Scholar
  141. 141.
    J. Huang, G.W. Feigenson, A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J. 76, 2142–2157 (1999)CrossRefGoogle Scholar
  142. 142.
    M.L. Longo, C.D. Blanchette, Imaging cerebroside-rich domains for phase and shape characterization in binary and ternary mixtures. Biochim. Biophys. Acta Biomembr. 1798, 1357–1367 (2010)CrossRefGoogle Scholar
  143. 143.
    S.L. Veatch, S.L. Keller, Organization in Lipid Membranes Containing Cholesterol. Phys. Rev. Lett. 89, 268101 (2002)CrossRefGoogle Scholar
  144. 144.
    M. Fidorra, T. Heimburg, L.A. Bagatolli, Direct visualization of the lateral structure of porcine brain cerebrosides/POPC mixtures in presence and absence of cholesterol. Biophys. J. 97, 142–154 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
  2. 2.Department of Material Science and Physical ChemistryUniversity of BarcelonaBarcelonaSpain
  3. 3.Laboratory of Self-Organizing Soft Matter and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and ChemistryInstitute for Complex Molecular Systems, Eindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.Centro de Investigación Biomédica en Red (CIBER), Instituto de Salud Carlos IIIMadridSpain

Personalised recommendations