Advertisement

A Modified Crow Search Algorithm with Applications to Power System Problems

  • Erik Cuevas
  • Emilio Barocio Espejo
  • Arturo Conde Enríquez
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 822)

Abstract

The efficient use of energy in electrical systems has become a relevant topic due to its environmental impact. Parameter identification in induction motors and capacitor allocation in distribution networks are two representative problems that have strong implications in power systems. From an optimization perspective, both problems are considered extremely complex due to their non-linearity, discontinuity, and high multi-modality. These characteristics make difficult to solve them by using standard optimization techniques. On the other hand, metaheuristic methods have been widely used as alternative optimization algorithms to solve complex engineering problems.

References

  1. 1.
    V. Prakash, S. Baskar, S. Sivakumar, K.S. Krishna, A novel efficiency improvement measure in three-phase induction motors, its conservation potential and economic analysis. Energy Sustain. Dev. 12(2), 78–87 (2008).  https://doi.org/10.1016/S0973-0826(08)60431-7CrossRefGoogle Scholar
  2. 2.
    R. Saidur, A review on electrical motors energy use and energy savings. (n.d.).  https://doi.org/10.1016/j.rser.2009.10.018CrossRefGoogle Scholar
  3. 3.
    I. Perez, M. Gomez-Gonzalez, F. Jurado, Estimation of induction motor parameters using shuffled frog-leaping algorithm. Electr. Eng. 95(3), 267–275 (2013).  https://doi.org/10.1007/s00202-012-0261-7CrossRefGoogle Scholar
  4. 4.
    V.P. Sakthivel, R. Bhuvaneswari, S. Subramanian, Artificial immune system for parameter estimation of induction motor. Expert Syst. Appl. 37(8), 6109–6115 (2010).  https://doi.org/10.1016/j.eswa.2010.02.034CrossRefGoogle Scholar
  5. 5.
    K.R. Devabalaji, K. Ravi, D.P. Kothari, Optimal location and sizing of capacitor placement in radial distribution system using bacterial foraging optimization algorithm. Int. J. Electr. Power Energy Syst. 71, 383–390 (2015).  https://doi.org/10.1016/j.ijepes.2015.03.008CrossRefGoogle Scholar
  6. 6.
    H.N. Ng, M.M.A. Salama, A.Y. Chikhani, Classification of capacitor allocation techniques. IEEE Trans. Power Deliv. 15(1), 387–392 (2000).  https://doi.org/10.1109/61.847278CrossRefGoogle Scholar
  7. 7.
    J. Grainger, S. Lee, Optimum size and location of shunt capacitors for reduction of losses on distribution feeders. IEEE Trans. Power Appar. Syst. PAS-100(3), 1105–1118 (1981).  https://doi.org/10.1109/TPAS.1981.316577CrossRefGoogle Scholar
  8. 8.
    S. Lee, J. Grainger, Optimum placement of fixed and switched capacitors on primary distribution feeders. IEEE Trans. Power Appar. Syst. PAS-100(1), 345–352 (1981).  https://doi.org/10.1109/TPAS.1981.316862CrossRefGoogle Scholar
  9. 9.
    N.M. Neagle, D.R. Samson, Loss reduction from capacitors installed on primary feeders. Trans. Am. Inst. Electr. Eng. Part III: Power Appar. Syst. 75(3) (1956).  https://doi.org/10.1109/AIEEPAS.1956.4499390
  10. 10.
    H. Dura, Optimum number, location, and size of shunt capacitors in radial distribution feeders a dynamic programming approach. IEEE Trans. Power Appar. Syst. PAS-87(9), 1769–1774 (1968).  https://doi.org/10.1109/TPAS.1968.291982CrossRefGoogle Scholar
  11. 11.
    P.M. Hogan, J.D. Rettkowski, J.L. Bala, in Optimal Capacitor Placement Using Branch and Bound. Proceedings of the 37th Annual North American Power Symposium, 2005 (IEEE, n.d.), pp. 84–89.  https://doi.org/10.1109/NAPS.2005.1560506
  12. 12.
    M. Chis, M.M.A. Salama, S. Jayaram, Capacitor placement in distribution systems using heuristic search strategies. IEE Proc. Gener. Transm. Distrib. 144(3), 225 (1997).  https://doi.org/10.1049/ip-gtd:19970945CrossRefGoogle Scholar
  13. 13.
    I.C. da Silva, S. Carneiro, E.J. de Oliveira, J. de Souza Costa, J.L.R. Pereira, P.A.N. Garcia, A heuristic constructive algorithm for capacitor placement on distribution systems. IEEE Trans. Power Syst. 23(4), 1619–1626 (2008).  https://doi.org/10.1109/TPWRS.2008.2004742CrossRefGoogle Scholar
  14. 14.
    S.F. Mekhamer, M.E. El-Hawary, S.A. Soliman, M.A. Moustafa, M.M. Mansour, New heuristic strategies for reactive power compensation of radial distribution feeders. IEEE Trans. Power Deliv. 17(4), 1128–1135 (2002).  https://doi.org/10.1109/TPWRD.2002.804004CrossRefGoogle Scholar
  15. 15.
    A. Askarzadeh, Capacitor placement in distribution systems for power loss reduction and voltage improvement: a new methodology. IET Gener. Transm. Distrib. 10(14), 3631–3638 (2016).  https://doi.org/10.1049/iet-gtd.2016.0419CrossRefGoogle Scholar
  16. 16.
    M.M. Aman, G.B. Jasmon, A.H.A. Bakar, H. Mokhlis, M. Karimi, Optimum shunt capacitor placement in distribution system—a review and comparative study. Renew. Sustain. Energy Rev. (2014).  https://doi.org/10.1016/j.rser.2013.10.002CrossRefGoogle Scholar
  17. 17.
    A.R. Jordehi, Optimisation of electric distribution systems: a review. Renew. Sustain. Energy Rev. 51, 1088–1100 (2015).  https://doi.org/10.1016/j.rser.2015.07.004CrossRefGoogle Scholar
  18. 18.
    O. Avalos, E. Cuevas, J. Gálvez, Induction motor parameter identification using a gravitational search algorithm. Computers 5(2), 6 (2016).  https://doi.org/10.3390/computers5020006CrossRefGoogle Scholar
  19. 19.
    Y.M. Shuaib, M.S. Kalavathi, C.C.A. Rajan, Optimal capacitor placement in radial distribution system using gravitational search algorithm. Int. J. Electr. Power Energy Syst. 64, 384–397 (2015).  https://doi.org/10.1016/j.ijepes.2014.07.041CrossRefGoogle Scholar
  20. 20.
    V.P. Sakthivel, R. Bhuvaneswari, S. Subramanian, An accurate and economical approach for induction motor field efficiency estimation using bacterial foraging algorithm. Measurement 44(4), 674–684 (2011).  https://doi.org/10.1016/j.measurement.2010.12.008CrossRefGoogle Scholar
  21. 21.
    A. Askarzadeh, A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016).  https://doi.org/10.1016/j.compstruc.2016.03.001CrossRefGoogle Scholar
  22. 22.
    C.-S. Lee, H.V.H. Ayala, L.S. dos Coelho, Capacitor placement of distribution systems using particle swarm optimization approaches. Int. J. Electr. Power Energy Syst. 64, 839–851 (2015).  https://doi.org/10.1016/j.ijepes.2014.07.069CrossRefGoogle Scholar
  23. 23.
    C. Picardi, N. Rogano, in Parameter Identification of Induction Motor Based on Particle Swarm Optimization. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006 (IEEE, n.d.), pp. 968–973.  https://doi.org/10.1109/SPEEDAM.2006.1649908
  24. 24.
    K. Prakash, M. Sydulu, in Particle Swarm Optimization Based Capacitor Placement on Radial Distribution Systems. 2007 IEEE Power Engineering Society General Meeting (IEEE, 2007), pp. 1–5.  https://doi.org/10.1109/PES.2007.386149
  25. 25.
    S.P. Singh, A.R. Rao, Optimal allocation of capacitors in distribution systems using particle swarm optimization. Int. J. Electr. Power Energy Syst. 43(1), 1267–1275 (2012).  https://doi.org/10.1016/j.ijepes.2012.06.059CrossRefGoogle Scholar
  26. 26.
    F. Alonge, F. D’Ippolito, G. Ferrante, F. Raimondi, Parameter identification of induction motor model using genetic algorithms. IEE Proc. Control (1998). Retrieved from http://digital-library.theiet.org/content/journals/10.1049/ip-cta_19982408
  27. 27.
    K. Swarup, in Genetic Algorithm for Optimal Capacitor Allocation in Radial Distribution Systems. Proceedings of Sixth WSEAS International Conference on Evolutionary Computation (2005). Retrieved from http://www.wseas.us/e-library/conferences/2005lisbon/papers/496-294.pdf
  28. 28.
    J. Chiou, C. Chang, C. Su, Capacitor placement in large-scale distribution systems using variable scaling hybrid differential evolution. Int. J. Electr. Power Energy Syst. (2006). Retrieved from http://www.sciencedirect.com/science/article/pii/S0142061506001025
  29. 29.
    C. Su, C. Lee, in Modified Differential Evolution Method for Capacitor Placement of Distribution Systems. Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES (2002). Retrieved from http://ieeexplore.ieee.org/abstract/document/1178285/
  30. 30.
    R. Ursem, P. Vadstrup, in Parameter Identification of Induction Motors Using Differential Evolution. The 2003 Congress on Evolutionary Computation, 2003. CEC ‘03 (2003). Retrieved from http://ieeexplore.ieee.org/abstract/document/1299748/
  31. 31.
    Y.-C. Huang, H.-T. Yang, C.-L. Huang, Solving the capacitor placement problem in a radial distribution system using Tabu Search approach. IEEE Trans. Power Syst. 11(4), 1868–1873 (1996).  https://doi.org/10.1109/59.544656MathSciNetCrossRefGoogle Scholar
  32. 32.
    X.-S. Yang, T.O. Ting, M. Karamanoglu, Random Walks, Lévy Flights, Markov Chains and Metaheuristic Optimization (Springer, Netherlands, 2013), pp. 1055–1064.  https://doi.org/10.1007/978-94-007-6516-0_116Google Scholar
  33. 33.
    D. Oliva, S. Hinojosa, E. Cuevas, G. Pajares, O. Avalos, J. Gálvez, Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm. Expert Syst. Appl. 79, 164–180 (2017).  https://doi.org/10.1016/j.eswa.2017.02.042CrossRefGoogle Scholar
  34. 34.
    D. Liu, C. Liu, Q. Fu, T. Li, K. Imran, S. Cui, F. Abrar, ELM evaluation model of regional groundwater quality based on the crow search algorithm. Ecol. Indic. (2017). Retrieved from http://www.sciencedirect.com/science/article/pii/S1470160X17303527
  35. 35.
    N.J. Emery, N.S. Clayton, The mentality of crows: convergent evolution of intelligence in Corvids and Apes. Science 306(5703) (2004). Retrieved from http://science.sciencemag.org/content/306/5703/1903.fullCrossRefGoogle Scholar
  36. 36.
    S. Rajput, M. Parashar, H.M. Dubey, M. Pandit, in Optimization of Benchmark Functions and Practical Problems Using Crow Search Algorithm. 2016 Fifth International Conference on Eco-friendly Computing and Communication Systems (ICECCS) (IEEE, 2016), pp. 73–78.  https://doi.org/10.1109/Eco-friendly.2016.7893245
  37. 37.
    A. Baronchelli, F. Radicchi, Lévy flights in human behavior and cognition. Chaos, Solitons Fractals (2013). Retrieved from http://www.sciencedirect.com/science/article/pii/S0960077913001379CrossRefGoogle Scholar
  38. 38.
    X.-S. Yang, Nature-Inspired Metaheuristic Algorithms (Luniver Press, 2010)Google Scholar
  39. 39.
    T. Chen, M. Chen, K. Hwang, Distribution system power flow analysis-a rigid approach. IEEE Trans. Power Deliv. (1991). Retrieved from http://ieeexplore.ieee.org/abstract/document/85860/
  40. 40.
    B. Venkatesh, R. Ranjan, Data structure for radial distribution system load flow analysis. IEE Proc. Gener. Transm. Distrib. (2003). Retrieved from http://digital-library.theiet.org/content/journals/10.1049/ip-gtd_20030013
  41. 41.
    S. Ghosh, D. Das, (1999). Method for load-flow solution of radial distribution networks. IEE Proc. Gener. Transm. Distrib. Retrieved from http://ieeexplore.ieee.org/abstract/document/820368/
  42. 42.
    R.S. Rao, S.V.L. Narasimham, M. Ramalingaraju, Optimal capacitor placement in a radial distribution system using plant growth simulation algorithm. Int. J. Electr. Power Energy Syst. 33(5), 1133–1139 (2011).  https://doi.org/10.1016/j.ijepes.2010.11.021CrossRefGoogle Scholar
  43. 43.
    M. Jamadi, F. Merrikh-Bayat, New Method for Accurate Parameter Estimation of Induction Motors Based on Artificial Bee Colony Algorithm (2014). Retrieved from http://arxiv.org/abs/1402.4423
  44. 44.
    J.J. Grainger, S.H. Lee, Capacity release by shunt capacitor placement on distribution feeders: a new voltage-dependent model. IEEE Trans. Power Appar. Syst. PAS-101(5), 1236–1244 (1982).  https://doi.org/10.1109/TPAS.1982.317385CrossRefGoogle Scholar
  45. 45.
    M.E. Baran, F.F. Wu, Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 4(2), 1401–1407 (1989).  https://doi.org/10.1109/61.25627CrossRefGoogle Scholar
  46. 46.
    M. Baran, F.F. Wu, Optimal sizing of capacitors placed on a radial distribution system. IEEE Trans. Power Deliv. 4(1), 735–743 (1989).  https://doi.org/10.1109/61.19266CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erik Cuevas
    • 1
  • Emilio Barocio Espejo
    • 2
  • Arturo Conde Enríquez
    • 3
  1. 1.Departamento de Electrónica, CUCEIUniversidad de GuadalajaraGuadalajaraMexico
  2. 2.CUCEIUniversidad de GuadalajaraGuadalajaraMexico
  3. 3.Universidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations