Advertisement

Non-conventional Overcurrent Relays Coordination

  • Erik Cuevas
  • Emilio Barocio Espejo
  • Arturo Conde Enríquez
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 822)

Abstract

The Invasive Weed Optimization (IWO) algorithm has been adapted for the high dimension coordination problem. Many utilities follow the criterion of increase use of differential protection in transmission lines which has absolute selectivity with no backup function offered.

References

  1. 1.
    M. Affenzeller, S. Winkler, S. Wagner, A. Beham, Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications, 1st edn. (Chapman & Hall/CRC, London, UK, 2009)CrossRefGoogle Scholar
  2. 2.
    J.H. Holland, Adaptation in Natural and Artificial Systems, 2nd edn. (MITPress, Cambridge, USA, 1992)CrossRefGoogle Scholar
  3. 3.
    M. Mitchell, An Introduction to Genetic Algorithms, 5th edn. (MIT Press, Cambridge, USA, 1999)zbMATHGoogle Scholar
  4. 4.
    J. Bronowski, The Ascent of Man (British Broadcasting Corporation, London, UK, 1973)Google Scholar
  5. 5.
    C. Darwin, The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 6th edn. (John Murray, London, UK, 1859)Google Scholar
  6. 6.
    A.R. Wallace, My Life; A Record of Events and Opinions, 1st edn. (Chapman & Hall, London, UK, 1905)CrossRefGoogle Scholar
  7. 7.
    M. Gen, R. Cheng, L. Lin, Network Models and Optimization: Multiobjective Genetic Algorithm Approach (Decision Engineering), 1st edn. (Springer, New York, 2008)Google Scholar
  8. 8.
    D.E. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algorithms, in Foundations of Genetic Algorithms, (Morgan Kaufmann, 1991), pp. 69–93Google Scholar
  9. 9.
    J.E. Baker, Reducing bias and inefficiency in the selection algorithm, in Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Application, (Erlbaum Associates Inc, New Jersey, USA, 1987), pp. 14–21Google Scholar
  10. 10.
    A.R. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 1(4), 355–366 (2006)CrossRefGoogle Scholar
  11. 11.
    H.S. Rad, C. Lucas, A recommender system based on invasive weed optimization algorithm, in Proceedings of the IEEE Congress on Evolutionary Computation, Sept 2007, pp. 4297–4304)Google Scholar
  12. 12.
    H. Josin ́ski, D. Kostrzewa, A. Michalczuk, A. Switonski, The expanded invasive weed optimization metaheuristic for solving continuous and discrete optimization problems. Sci. World J. 2014(1), 1–14 (2006)Google Scholar
  13. 13.
    H.G. Baker, G.L, Stebbins, International Union of Biological Sciences, in The genetics of colonizing species: Proceedings (Academic Press, New York, USA, 1965)Google Scholar
  14. 14.
    Y. Zhou, Q. Luo, H. Chen, A novel differential evolution invasive weed optimization algorithm for solving nonlinear equations systems. J. Appl. Math. (4), 1–18 (2013)MathSciNetzbMATHGoogle Scholar
  15. 15.
    IEEE Std. C37.113–1999, Guide for protective relay applications to transmission lines (1999)Google Scholar
  16. 16.
    A.J. Urdaneta, R. Nadira, L.G. Perez, Optimal coordination of directional overcurrent relays in interconnected power systems. IEEE Trans. Power Del. 3(3), 903–911 (1988)CrossRefGoogle Scholar
  17. 17.
    B. Chattopadhyay, M.S. Sachdev, T.S. Sidhu, An online relay coordination algorithm for adaptive protection using linear programming technique. IEEE Trans. Power Del. 11(1), 165–173 (1996)CrossRefGoogle Scholar
  18. 18.
    C. So, K.K. Li, K.T. Lai, K.Y. Fung, Application of genetic algorithm for overcurrent relay coordination, in Sixth International Conference on Developments in Power System Protection 6 (1997), pp. 66–69Google Scholar
  19. 19.
    F. Razavi, H.A. Abyaneha, M. Al-Dabbagh, R. Mohammadia, H. Torkaman, A new comprehensive genetic algorithm method for optimal overcurrent relays coordination. Electr. Power Syst. Res. 78, 713–720 (2008)CrossRefGoogle Scholar
  20. 20.
    P.P. Bedekar, S.R. Bhide, Optimum coordination of overcurrent relay timing using continuous genetic algorithm. Expert Syst. Appl. 38, 11286–11292 (2011)CrossRefGoogle Scholar
  21. 21.
    P.P. Bedekar, S.R. Bhide, Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach. IEEE Trans. Power Deliv. 26(1), 109–119 (2011)CrossRefGoogle Scholar
  22. 22.
    M.M. Mansour, S.F. Mekhamer, N.E.-S. El-Kharbawe, A modified particle swarm optimizer for the coordination of directional overcurrent relays. IEEE Trans. Power Del. 22(3), 1400–1410 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Liu, M.-T. Yang, A new hybrid nelder-mead particle swarm optimization for coordination optimization of directional overcurrent relays. Math. Prob. Eng. 2012, Article 456047 (2012)Google Scholar
  24. 24.
    M.R. Asadi, S.M. Kouhsari, Optimal overcurrent relays coordination using particle-swarm-optimization algorithm, in IEEE Power Systems Conference and Exposition (Seattle, WA, 15–18 Mar 2009), pp. 1–7Google Scholar
  25. 25.
    A.S. Noghabi, J. Sadeh, H.R. Mashhadi, Considering different network topologies in optimal overcurrent relay coordination using a hybrid GA. IEEE Trans. Power Del. 24(4), 1857–1863 (2009)CrossRefGoogle Scholar
  26. 26.
    A.M. Girjandi, M. Pourfallah, Optimal coordination of overcurrent relays by mixed genetic and particle swarm optimization algorithm and comparison of both, in International Conference on Signal, Image Processing and Applications, vol. 21 (IACSIT Press, Singapore, 2011)Google Scholar
  27. 27.
    P.P. Bedekar, S.R. Bhide, Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach. IEEE Trans. Power Del. 26, 109–119 (2011)CrossRefGoogle Scholar
  28. 28.
    M. Ezzeddine, R. Kaczmarek, A novel method for optimal coordination of directional overcurrent relays considering their available discrete settings and several operation characteristics. Electr. Power Syst. Res. 81, 1475–1481 (2011)CrossRefGoogle Scholar
  29. 29.
    Y. Lu, J.-L. Chung, Detecting and solving the coordination curve intersection problem of overcurrent relays in sub-transmission systems with a new method. Electr. Power Syst. Res. 95, 17–27 (2013)CrossRefGoogle Scholar
  30. 30.
    T.R. Chelliah, R. Thangaraj, S. Allamsetty, M. Pant, Application of genetic algorithm for overcurrent relay coordination. Int. J. Electric. Power Energy Syst. 55, 341–350 (2014)CrossRefGoogle Scholar
  31. 31.
    J.L. Blackburn, T.J. Domin, Introduction and general philosophies, in Protective Relaying, Principles and Applications, 3rd edn. (Taylor and Francis Group, LLC, New York, 2006)Google Scholar
  32. 32.
    S.H. Horowitz, A.G. Phadke, J.S. Thorp, Adaptive transmission system relaying. IEEE Trans. Power Delivery 3, 1436–1445 (1988)CrossRefGoogle Scholar
  33. 33.
    IEEE, IEEE Standard Inverse, Time Characteristic Equations for Over-current Relays, IEEE Std C37.112-1996 (1997), pp. 1–13Google Scholar
  34. 34.
    IEC Standard 255-4, Single Input Energizing Measuring Relays with Dependent Specified Time, 1st edn. IEC Publication 255-4 (1976)Google Scholar
  35. 35.
    J. Otamendi, The importance of the objective function definition and evaluation in the performance of the search algorithms, in 16th European Simulation Symposium (2004)Google Scholar
  36. 36.
    W. Mock, Pareto optimality, in Encyclopedia of Global Justice, ed. by D.K. Chatterjee (Springer, Netherlands, 2011), pp. 808–809CrossRefGoogle Scholar
  37. 37.
    K. Chen, Industrial Power Distribution and Illuminating Systems. Electrical and Computer Engineering (Taylor & Francis, New York, USA, 1990)Google Scholar
  38. 38.
    A.F. Sleva, Protective Relay Principles, 1st edn. (Taylor & Francis, New York, USA, 2009)CrossRefGoogle Scholar
  39. 39.
    K. Schittkowski, NLPQL: a fortran subroutine solving constrained nonlinear programming problems. Ann. Oper. Res. 5(2) (1986)MathSciNetCrossRefGoogle Scholar
  40. 40.
    P.T. Boggs, J.W. Tolle, Quasi-Newton methods and their application to function minimisation. Acta Numer. 4(1), 1–54 (1995)Google Scholar
  41. 41.
    P.E. Gill, E. Wong, Sequential quadratic programming methods, in Mixed Integer Nonlinear Programming, vol. 154, Volumes in Mathematics and its Applications, ed. by J. Lee, S. Leyffer (Springer, New York, USA, 2012), pp. 147–224CrossRefGoogle Scholar
  42. 42.
    R.B. Wilson, A Simplicial Algorithm for Concave Programming. Ph.D, thesis, Graduate School of Business Administration, Harvard University, Cambridge, USA, 1963Google Scholar
  43. 43.
    MATLAB, Find minimum of constrained nonlinear multivariable function. http://www.mathworks.com/help/optim/ug/fmincon.html (2015)
  44. 44.
    MATLAB, Optimization toolbox. http://www.mathworks.com/products/optimization (2015)
  45. 45.
    MATLAB, Optimization toolbox user’s guide. http://www.mathworks.com/help/pdf_doc/optim/optim_tb.pdf (2015)
  46. 46.
    MATLAB, The language of technical computing. http://www.mathworks.com/products/optimization/ (2015)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erik Cuevas
    • 1
  • Emilio Barocio Espejo
    • 2
  • Arturo Conde Enríquez
    • 3
  1. 1.Departamento de Electrónica, CUCEIUniversidad de GuadalajaraGuadalajaraMexico
  2. 2.CUCEIUniversidad de GuadalajaraGuadalajaraMexico
  3. 3.Universidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations