Introduction to Metaheuristics Methods

  • Erik Cuevas
  • Emilio Barocio Espejo
  • Arturo Conde Enríquez
Part of the Studies in Computational Intelligence book series (SCI, volume 822)


This chapter presents an overview of optimization techniques, describing their main characteristics. The goal of this chapter is to motivate the consideration of metaheuristic schemes for solving optimization problems. The study is conducted in such a way that it is clear the necessity of using metaheuristic approaches for the solution of power system problems.


  1. 1.
    B. Akay, D. Karaboga, A survey on the applications of artificial bee colony in signal, image, and video processing. SIViP 9(4), 967–990 (2015)CrossRefGoogle Scholar
  2. 2.
    X.-S. Yang, Engineering Optimization (Wiley, 2010)Google Scholar
  3. 3.
    M.A. Treiber, Optimization for Computer Vision an Introduction to Core Concepts and Methods (Springer, 2013)Google Scholar
  4. 4.
    D. Simon, Evolutionary Optimization Algorithms (Wiley, 2013)Google Scholar
  5. 5.
    C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003). Scholar
  6. 6.
    S.J. Nanda, G. Panda, A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol. Comput. 16, 1–18 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4 (December 1995), pp. 1942–1948Google Scholar
  8. 8.
    D. Karaboga, An idea based on honey bee swarm for numerical optimization. Technical Report-TR06. Engineering Faculty, Computer Engineering Department, Erciyes University, 2005Google Scholar
  9. 9.
    Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm: harmony search. Simulations 76, 60–68 (2001)CrossRefGoogle Scholar
  10. 10.
    X.S. Yang, A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies for Optimization (NISCO 2010), Studies in Computational Intelligence, vol. 284, ed. by C. Cruz, J. González, G.T.N. Krasnogor, D.A. Pelta (Springer Verlag, Berlin, 2010), pp. 65–74Google Scholar
  11. 11.
    X.S. Yang, Firefly algorithms for multimodal optimization, in Stochastic Algorithms: Foundations and Applications, SAGA 2009. Lecture Notes in Computer Sciences, vol. 5792 (2009), pp. 169–178CrossRefGoogle Scholar
  12. 12.
    E. Cuevas, M. C, D. Zaldívar, M. Pérez-Cisneros, A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013)CrossRefGoogle Scholar
  13. 13.
    E. Cuevas, M. González, D. Zaldivar, M. Pérez-Cisneros, G. García, An algorithm for global optimization inspired by collective animal behaviour. Discrete Dyn. Nat. Soc. (2012, art. no. 638275)Google Scholar
  14. 14.
    L.N. de Castro, F.J. von Zuben, Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)CrossRefGoogle Scholar
  15. 15.
    Ş.I. Birbil, S.C. Fang, An electromagnetism-like mechanism for global optimization. J. Glob. Optim. 25(1), 263–282 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Storn, K. Price, Differential evolution—a simple and efficient adaptive scheme for global optimisation over continuous spaces. Technical Report TR-95–012, ICSI, Berkeley, CA, 1995Google Scholar
  17. 17.
    D.E. Goldberg, Genetic Algorithm in Search Optimization and Machine Learning (Addison-Wesley, 1989)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erik Cuevas
    • 1
  • Emilio Barocio Espejo
    • 2
  • Arturo Conde Enríquez
    • 3
  1. 1.Departamento de Electrónica, CUCEIUniversidad de GuadalajaraGuadalajaraMexico
  2. 2.CUCEIUniversidad de GuadalajaraGuadalajaraMexico
  3. 3.Universidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations