Advertisement

Singular Perturbation Approach for Linear Coupled ODE-PDE Systems

  • Ying Tang
  • Christophe Prieur
  • Antoine GirardEmail author
Chapter
Part of the Advances in Delays and Dynamics book series (ADVSDD, volume 10)

Abstract

This paper focuses on a class of linear coupled ODE-PDE systems whose dynamics evolve in two time scales. The fast time scale modeled by a small positive perturbation parameter is introduced to the dynamics either of the ODE or of the PDE. By setting the perturbation parameter to zero, two subsystems, namely the reduced and the boundary-layer subsystems, are formally computed. Firstly, we propose a sufficient stability condition for the full coupled system. This stability condition implies the stability of both subsystems. Then, we state an approximation of the full coupled ODE-PDE systems by the subsystems based on the singular perturbation method. The error between the solution of the full system and that of the subsystems is the order of the perturbation parameter. Finally, numerical simulations on academic examples illustrate the theoretical results.

References

  1. 1.
    Bastin, G., Coron, J.-M.: Stability and Boundary Stabilization of 1-D Hyperbolic Systems. PNLDE Subseries in Control, Birkhäuser (2016)Google Scholar
  2. 2.
    Bastin, G., Coron, J.-M., Tamasoiu, S.: Stability of linear density-flow hyperbolic systems under PI boundary control. Automatica 53, 37–42 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Coron, J.-M., Bastin, G., d’Andréa-Novel, B.: Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47(3), 1460–1498 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Daafouz, J., Tucsnak, M., Valein, J.: Nonlinear control of a coupled PDE/ODE system modeling a switched power converter with a transmission line. Syst. Control Lett. 70, 92–99 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dos Santos, V., Bastin, G., Coron, J.-M., d’Andréa-Novel, B.: Boundary control with integral action for hyperbolic systems of conservation laws: stability and expriments. Automatica 44, 1013–1318 (2008)zbMATHGoogle Scholar
  6. 6.
    Khalil, H.K.: Nonlinear Systems. Prentice-Hall (1996)Google Scholar
  7. 7.
    Kokotović, P., Haddad, A.: Singular perturbations of a class of time optimal controls. IEEE Trans. Autom. Control 20, 163–164 (1975)CrossRefGoogle Scholar
  8. 8.
    Kokotović, P., Khalil, H., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press (1986)Google Scholar
  9. 9.
    Kokotović, P., Sannuti, P.: Singular perturbation method for reducing the model order in optimal control design. IEEE Trans. Autom. Control 13, 377–384 (1968)CrossRefGoogle Scholar
  10. 10.
    Kokotović, P., Yackel, R.: Singular perturbation of linear regulators: basic theorems. IEEE Trans. Autom. Control 17, 29–37 (1972)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Krstic, M., Smyshlyaev, A.: Backtepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst. Control Lett. 57, 750–758 (2008)CrossRefGoogle Scholar
  12. 12.
    Littman, W., Markus, L.: Exact boundary controllability of a hybrid system of elasticity. Arch. Ration. Mech. Anal. 103(3), 193–236 (1988)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tang, Y., Mazanti, G.: Stability analysis of coupled linear ODE-hyperbolic PDE systems with two time scales. Automatica (accepted)Google Scholar
  14. 14.
    Tang, Y., Prieur, C., Girard, A.: Tikhonov theorem for linear hyperbolic systems. Automatica 57, 1–10 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tang, Y., Prieur, C., Girard, A.: Singular perturbation approximation by means of a \({H}^2\) Lyapunov function for linear hyperbolic systems. Syst. Control Lett. 88, 24–31 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université de Lorraine, CRAN UMR 7039 and CNRSVandoeuvre-lès-NancyFrance
  2. 2.GIPSA-labSaint Martin d’Hères CedexFrance
  3. 3.Laboratoire des signaux et systèmes (L2S)CNRS, CentraleSupélec, Université Paris-Sud, Université Paris-SaclayGif-sur-Yvette CedexFrance

Personalised recommendations