Advertisement

CreaCube, a Playful Activity with Modular Robotics

  • Margarida RomeroEmail author
  • Dayle DavidEmail author
  • Benjamin LilleEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11385)

Abstract

Programmable toys are blurring the lines between serious games and educational robotics solutions. In this study, the CreaCube activity is analysed using Cubelets modular robotics based on the Learning Mechanics and Game Mechanics (LMGM) framework. The CreaCube playful activity is used to analyse the creative problem-solving process through a playful activity made from interconnectable electronic cubes. The resolution of the CreaCube activity involves the manipulation and assembly of cubes to build a vehicle that moves independently from an initial point to a final point. After describing the CreaCube activity from the perspective of the LMGM framework, the discussion is developed in relation to creative problem solving.

References

  1. 1.
    Arnab, S., Lim, T., Carvalho, M.B., et al.: Mapping learning and game mechanics for serious games analysis. Br. J. Edu. Technol. 46(2), 391–411 (2015)CrossRefGoogle Scholar
  2. 2.
    Bloom, B.S., Davis, A., Hess, R., Silverman, S.B.: Compensatory Education for Cultural Deprivation. Holt, Rinehart and Winston, New York (1965)Google Scholar
  3. 3.
    Buibas, M., Sweet III, C.W., Caskey, M.S., Levin, J.A.: Intelligent modular robotic apparatus and methods. Google Patents (2016)Google Scholar
  4. 4.
    Catlin, D., Kandlhofer, M., Holmquist, S.: EduRobot taxonomy a provisional schema for classifying educational robots (2018)Google Scholar
  5. 5.
    Conchinha, C., Osório, P., de Freitas, J.C.: Playful learning: educational robotics applied to students with learning disabilities. In: 2015 International Symposium on Computers in Education (SIIE), pp. 167–171. IEEE (2015)Google Scholar
  6. 6.
    Csikszentmihalyi, M.: Flow, The Psychology of Optimal Experience, Steps Towards Enchancing the Quality of Life. Harper & Row, Publishers, Inc., New York (1991)Google Scholar
  7. 7.
    Dougherty, D.: The maker movement. Innovations 7(3), 11–14 (2012)CrossRefGoogle Scholar
  8. 8.
    Eguchi, A., Shen, J.: Student learning experience through CoSpace educational robotics: 3D simulation educational robotics tool. In: Cases on 3D Technology Application and Integration in Education, pp. 93–127. IGI Global (2013)Google Scholar
  9. 9.
    Fleming, L.: Worlds of Making: Best Practices for Establishing a Makerspace for Your School. Corwin Press, Thousand Oaks (2015)Google Scholar
  10. 10.
    Koster, R.: A Theory of Fun for Game Design. O’Reilly Media, Sebastopol (2013)Google Scholar
  11. 11.
    Misirli, A., Komis, V.: Robotics and programming concepts in early childhood education: a conceptual framework for designing educational scenarios. In: Karagiannidis, C., Politis, P., Karasavvidis, I. (eds.) Research on e-Learning and ICT in Education, pp. 99–118. Springer, New York (2014).  https://doi.org/10.1007/978-1-4614-6501-0_8CrossRefGoogle Scholar
  12. 12.
    Proulx, J.-N., Romero, M., Arnab, S.: Learning mechanics and game mechanics under the perspective of self-determination theory to foster motivation in digital game based learning. Simul. Gaming 48(1), 81–97 (2016)CrossRefGoogle Scholar
  13. 13.
    Romero, M., DeBlois, L., Pavel, A.: Créacube, comparaison de la résolution créative de problèmes, chez des enfants et des adultes, par le biais d’une tâche de robotique modulaire. MathémaTICE (61) (2018)Google Scholar
  14. 14.
    Shahid, S., Krahmer, E., Swerts, M.: Child-robot interaction: playing alone or together? In: CHI 2011 Extended Abstracts on Human Factors in Computing Systems, pp. 1399–1404. ACM (2011)Google Scholar
  15. 15.
    Weller, M.P., Do, E.Y.-L., Gross, M.D.: Escape machine: teaching computational thinking with a tangible state machine game. In: Proceedings of the 7th International Conference on Interaction Design and Children, pp. 282–289. ACM (2008)Google Scholar
  16. 16.
    Zawieska, K., Duffy, B.R.: The social construction of creativity in educational robotics. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Progress in Automation, Robotics and Measuring Techniques. AISC, vol. 351, pp. 329–338. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15847-1_32CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire d’Innovation et Numérique pour l’Education, Université Côte d’AzurNiceFrance
  2. 2.CRIRES, Université LavalQuebec CityCanada

Personalised recommendations