Advertisement

Conservative Semi-Lagrangian Numerical Algorithm with Decomposition of Integration Domain into Tetrahedrons for Three-Dimensional Advection Problem

  • Alexander VyatkinEmail author
  • Elena KuchunovaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11386)

Abstract

A conservative semi-Lagrangian method is developed in order to solve three-dimensional linear advection equation. It based on balance equation in integral form. Main feature of proposed method consists in way of computation of integral at lower time level. To compute integral, we decompose a domain of integration into several tetrahedrons and approximate integrand by trilinear function.

Keywords

Semi-Lagrangian method Advection equation Decomposition of integration domain Local conservation low 

Notes

Acknowledgments

The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science to research project No. 18-41-243006.

References

  1. 1.
    Wiin-Nielson, A.: On the application of trajectory methods in numerical forecasting. Tellus 11, 180–186 (1959)Google Scholar
  2. 2.
    Robert, A.: A stable numerical integration scheme for the primitive meteorological equations. Atmosphere-Ocean 19, 35–46 (1981)CrossRefGoogle Scholar
  3. 3.
    Morton, K.: Numerical Solution of Convection-Diffusion Problems. Chapman and Hall, London (1996)zbMATHGoogle Scholar
  4. 4.
    Russell, T., Celia, M.: An overview of research on Eulerian-Lagrangian localized adjoint methods. Adv. Water Res. 25, 1215–1231 (2002)CrossRefGoogle Scholar
  5. 5.
    Andreeva, E., Vyatkin, A., Shaidurov, V.: The semi-Lagrangian approximation in the finite element method for Navier-Stokes equations for a viscous incompressible fluid. In: AIP Conference Proceedings, vol. 1611 (2014).  https://doi.org/10.1063/1.4893794
  6. 6.
    Celledoni, E., Kometa, B., Verdier, O.: High order semi-Lagrangian methods for the incompressible Navier-Stokes equations. J. Sci. Comput. 66(1), 91–115 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cameron, A., Raynaud, R., Dormy, E.: Multi-stage high order semi-Lagrangian schemes for incompressible flows in Cartesian geometries. Int. J. Numer. Meth. Fluids 82, 879–892 (2016).  https://doi.org/10.1002/fld.4245MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lentine, M., Gretarsson, J., Fedkiw, R.: An unconditionally stable fully conservative semi-Lagrangian method. J. Comput. Phys. 230, 2857–2879 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Arbogast, T., Wang, W.: Convergence of a fully conservative volume corrected characteristic method for transport problems. SIAM J. Numer. Anal. 48(3), 797–823 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Efremov, A., Karepova, E., Shaydurov, V., Vyatkin, A.: A computational realization of a semi-Lagrangian method for solving the advection equation. J. Appl. Math. (2014). Article ID 610398.  https://doi.org/10.1155/2014/610398MathSciNetCrossRefGoogle Scholar
  11. 11.
    Phillips, T., Williams, A.: Conservative semi-Lagrangian finite volume schemes. Numer. Meth. Part. Diff. Equ. 17, 403–425 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Behrens, J., Mentrup, L.: A conservative scheme for 2D and 3D adaptive semi-Lagrangian advection. Contemp. Math. 383, 175–190 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vyatkin, A.: A semi-Lagrangian algorithm based on the integral transformation for the three-dimensional advection problem. In: AIP Conference Proceedings, vol. 1684, p. 090012 (2015).  https://doi.org/10.1063/1.4934337
  14. 14.
    Terekhov, K.M., Nikitin, K.D., Olshanskii, M.A., Vassilevski, Y.V.: A semi-Lagrangian method on dynamically adapted octree meshes. Russ. J. Numer. Anal. Math. Model. 30(6), 363–380 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computational Modelling of SB RASKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations