Advertisement

Generalized Multiscale Finite Element Method for Poroelasticity Problems in Heterogeneous Media

  • A. TyrylginEmail author
  • M. Vasilyeva
  • D. Brown
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11386)

Abstract

In this work, we consider the poroelasticity problems in heterogeneous porous media. Mathematical model contains coupled system of the equations for pressure and displacements. For the numerical solution, we present a Generalized Multiscale Finite Element Method (GMsFEM). This method solves a problem on a coarse grid by construction of the local multiscale basic functions. The procedure begins with construction of multiscale bases for both displacement and pressure in each coarse block. Using a snapshot space and local spectral problems, we construct a basis of reduced dimension. Finally, after multiplying by a multiscale partitions of unity, the multiscale basis is constructed in the online phase and the coarse grid problem then can be solved for arbitrary forcing and boundary conditions. We compare the solutions by choosing different numbers of multiscale basis functions. The results show that GMsFEM can provide good accuracy for two and three dimensional problems in heterogeneous domains.

Keywords

Heterogeneous porous media Poroelasticity Geomechanics Fluid flow Coupled system Multiscale method GMsFEM 

Notes

Acknowledgments

Work is supported by the grant of the Russian Scientific Found (N 17-71-20055).

References

  1. 1.
    Meirmanov, A.: Mathematical Models for Poroelastic Flows. Atlantis Press, Paris (2014).  https://doi.org/10.2991/978-94-6239-015-7CrossRefzbMATHGoogle Scholar
  2. 2.
    Brown, D.L., Vasilyeva, M.V.: A generalized multiscale finite element method for poroelasticity problems II: nonlinear coupling. J. Comput. Appl. Math. 294, 372–388 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brown, D.L., Vasilyeva, M.V.: A generalized multiscale finite element method for poroelasticity problems I: linear problems. J. Comput. Appl. Math. 297, 132–146 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Akkutlu, I.Y., Efendiev, Y., Vasilyeva, M., Wang, Y.: Multiscale model reduction for shale gas transport in a coupled discrete fracture and dual-continuum porous media. J. Nat. Gas Sci. Eng. 48, 65–76 (2017)CrossRefGoogle Scholar
  5. 5.
    Kolesov, A.E., Vabishchevich, P.N., Vasilyeva, M.V.: Splitting schemes for poroelasticity and thermoelasticity problems. Comput. Math. Appl. 67, 2185–2198 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Sivtsev, P.V., Vabishchevich, P.N., Vasilyeva, M.V.: Numerical simulation of thermoelasticity problems on high performance computing systems. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) FDM 2014. LNCS, vol. 9045, pp. 364–370. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20239-6_40CrossRefGoogle Scholar
  7. 7.
    Armero, F.: Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions. Comput. Methods Appl. Mech. Eng. 171(3–4), 205–241 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods: Theory and Applications. STAMS, vol. 4. Springer Science & Business Media, New York (2009)zbMATHGoogle Scholar
  9. 9.
    Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116–135 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Terzaghi, K.: Theory of consolidation. In: Theoretical Soil Mechanics, pp. 265–296 (1943)Google Scholar
  11. 11.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)CrossRefGoogle Scholar
  12. 12.
    Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  13. 13.
    Salençon, J.: Handbook of Continuum Mechanics: General Concepts thermoelasticity. Springer Science & Business Media, Heidelberg (2001).  https://doi.org/10.1007/978-3-642-56542-7CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Multiscale Model Reduction LaboratoryNorth-Eastern Federal UniversityYakutskRussia
  2. 2.Institute for Scientific ComputationTexas A&M UniversityCollege StationUSA
  3. 3.School of Mathematical Sciences, GeoEnergy Research CenterThe University of NottinghamNottinghamUK

Personalised recommendations