Monte Carlo Solution of Dirichlet Problem for Semi-linear Equation

  • Abdujabbor RasulovEmail author
  • Gulnora Raimova
  • Matyokub Bakoev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11386)


In the present work Dirichlet boundary value problem (BVR) for semi-linear elliptic equation is considered. Assuming the existence of solution BVR obtained a probabilistic representation of the solution as a mathematical expectation of some random variable. In accordance with a probabilistic representation on the trajectories of the branching random process were constructed unbiased estimator of the solution. An unbiased estimator of the solution has finite variance, based on the trajectories of a branching process with a finite average number of branching and easily simulated. Some numerical experiments are performed.


Monte Carlo method An unbiased estimator Branching random process Markov chain Dirichlet problem 


  1. 1.
    Babich, M.V.: Real finite-gap solutions of the equation \(\varDelta {u}=\cosh (u)\). J. Math. Notes 50(1–2), 663–667 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics: Partial Differential Equations, vol. 2. Interscience, New York (1962)zbMATHGoogle Scholar
  3. 3.
    Harris, T.E.: The Theory of Branching Processes. Courier Corporation, Chelmsford (2002)zbMATHGoogle Scholar
  4. 4.
    Elepov, B.S., Mikhailov, G.A.: Solution of the Dirichlet problem for the equation \(\varDelta {u}-cu=-q\) by a model of “walks on spheres”. USSR Comput. Math. Math. Phys. 9(3), 194–204 (1969)CrossRefGoogle Scholar
  5. 5.
    Elepov, B.S., Mikhailov, G.A.: Use of the fundamental solutions of elliptic equations for constructing Monte Carlo algorithms. USSR Comput. Math. Math. Phys. 14(3), 187–194 (1974)CrossRefGoogle Scholar
  6. 6.
    Ermakov, S.M.: The Monte Carlo method and related problems. Nauka, Moscow (1975)Google Scholar
  7. 7.
    Ermakov, S.M., Mikhailov, G.M.: Statistical Modelling. Nauka, Moscow (1982). (in Russian)Google Scholar
  8. 8.
    Ermakov, S.M., Nekrutkin, V.V., Sipin, A.S.: Random Processes for Classical Equations of Mathematical Physics. Kluwer Academic Publishers, Dordrecht (1989)CrossRefGoogle Scholar
  9. 9.
    Meyer, P.A.: Probability and potentials. Blaisdell Publishing Company, New York (1966)zbMATHGoogle Scholar
  10. 10.
    Mikhailov, G.A.: Solving the Dirichlet problem for nonlinear elliptic equations by the Monte Carlo method. Sib. Math. J. 35(5), 967–975 (1994)CrossRefGoogle Scholar
  11. 11.
    Mikhailov, G.A., Voitishek, A.V.: Numerical statistical modelling. In: Monte Carlo Methods. Akademiya, Moscow (2006)Google Scholar
  12. 12.
    Mikhailov, G.A., Makarov, R.N.: Solution of boundary value problems of the second and third kind by Monte Carlo methods. Sib. Math. J. 38(3), 518–527 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mikhailov, G.A., Makarov, R.N.: Solution of boundary value problems by the method of “walks on spheres” with reflection from the boundary. J. Dokl. RAN 353(6), 720–722 (1997). (in Russian)Google Scholar
  14. 14.
    Neklyudov, A.V.: Behavior of the solution to Gauss-Bieberbach-Rademacher equation on plane. Ufa Math. J. 6(3), 85–94 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rasulov, A.S.: Monte Carlo method for solving nonlinear problems. Fan, Tashkent (1992). (in Russian)Google Scholar
  16. 16.
    Rasulov, A.S., Raimova, G.M.: Monte Carlo method for solution of initial-boundary value problems for nonlinear parabolic equations. J. Math. Comput. Simul. 146, 240–250 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rasulov, A.S., Sipin, A.S.: Solution of one nonlinear equation by Monte Carlo method. In: Monte Carlo Methods in Computational Mathematics and Mathematical Physics, Novosibirsk, pp. 149–155 (2001)Google Scholar
  18. 18.
    Shiryaev, A.N.: Probability. Graduate Texts in Mathematics, vol. 95. Springer, New York (1996). Print ISBN: 978-1-4757-2541-4. Online ISBN: 978-1-4757-2539-1. Series Print ISSN: 0072-5285CrossRefzbMATHGoogle Scholar
  19. 19.
    Simonov, N.A.: Random walks on spheres algorithms for solving mixed boundary value problem and Neumann problem. Sib. J. Comput. Math. 10(2), 209–220 (2007)zbMATHGoogle Scholar
  20. 20.
    Sipin, A.S.: Solution of two Dirichlet boundary value problems by the Monte Carlo method. USSR Comput. Math. Math. Phys. 19(2), 119–134 (1979)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abdujabbor Rasulov
    • 1
    Email author
  • Gulnora Raimova
    • 2
  • Matyokub Bakoev
    • 1
  1. 1.University of World Economy and DiplomacyTashkentUzbekistan
  2. 2.Institute of Mathematics, Academy of SciencesTashkentUzbekistan

Personalised recommendations