Advertisement

Numerical Solving a Boundary Value Problem for the Eikonal Equation

  • Alexander G. Churbanov
  • Petr N. VabishchevichEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11386)

Abstract

In the present work, a Dirichlet problem is studied for the eikonal equation. A nonlinear boundary value problem formulated here can be treated as the limit of the diffusion–reaction problem with a diffusion parameter tending to zero. For numerical solving the singularly perturbed diffusion–reaction problem, monotone approximations are used. Predictions for a 3D model problem are presented to demonstrate possibilities of the developed numerical algorithm. The standard piecewise-linear finite-element approximation is employed to constructed discretization in space.

Keywords

Eikonal equation Finite-element method Diffusion–reaction equation Singularly perturbed boundary value problem Monotone approximation 

Notes

Acknowledgements

Petr Vabishchevich gratefully acknowledges support from the the Russian Federation Government (# 14.Y26.31.0013).

References

  1. 1.
    Belyaev, A.G., Fayolle, P.A.: On variational and PDE-based distance function approximations. In: Computer Graphics Forum, vol. 34, pp. 104–118. Wiley Online Library (2015)Google Scholar
  2. 2.
    Bhattacharya, T., DiBenedetto, E., Manfredi, J.: Limits as \(p \rightarrow \infty \) of \(\triangle _p u_p = f\) and related extremal problems. Rend. Sem. Mat. Univ. Polytec. Torino 47, 15–68 (1989)Google Scholar
  3. 3.
    Bitzadze, A.V.: Some Classes of Partial Differential Equations. Nauka, Moscow (1981). (in Russian)Google Scholar
  4. 4.
    Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  5. 5.
    Cai, Q., Kollmannsberger, S., Sala-Lardies, E., Huerta, A., Rank, E.: On the natural stabilization of convection dominated problems using high order Bubnov-Galerkin finite elements. Comput. Math. Appl. 66(12), 2545–2558 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2(1), 17–31 (1973)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. (TOG) 32(5), 152 (2013)CrossRefGoogle Scholar
  8. 8.
    Fu, Z., Jeong, W.K., Pan, Y., Kirby, R.M., Whitaker, R.T.: A fast iterative method for solving the eikonal equation on triangulated surfaces. SIAM J. Sci. Comput. 33(5), 2468–2488 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fu, Z., Kirby, R.M., Whitaker, R.T.: A fast iterative method for solving the eikonal equation on tetrahedral domains. SIAM J. Sci. Comput. 35(5), C473–C494 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gilles, A., Pierre, K.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, 2nd edn. Springer, New York (2006).  https://doi.org/10.1007/978-0-387-44588-5CrossRefzbMATHGoogle Scholar
  11. 11.
    Gómez, J.V., Alvarez, D., Garrido, S., Moreno, L.: Fast methods for eikonal equations: an experimental survey. arXiv preprint arXiv:1506.03771 (2015)
  12. 12.
    Gurumoorthy, K.S., Rangarajan, A.: A Schrödinger equation for the fast computation of approximate euclidean distance functions. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 100–111. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02256-2_9CrossRefGoogle Scholar
  13. 13.
    Jeong, W.K., Whitaker, R.T.: A fast iterative method for eikonal equations. SIAM J. Sci. Comput. 30(5), 2512–2534 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kružkov, S.N.: Generalized solutions of the Hamilton-Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions. Sb.: Math. 27(3), 406–446 (1975)zbMATHGoogle Scholar
  15. 15.
    Letniowski, F.W.: Three-dimensional Delaunay triangulations for finite element approximations to a second-order diffusion operator. SIAM J. Sci. Stat. Comput. 13(3), 765–770 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (2012).  https://doi.org/10.1007/978-1-4612-5282-5CrossRefzbMATHGoogle Scholar
  17. 17.
    Roos, H., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems. Springer Series in Computational Mathematics, vol. 24. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-34467-4CrossRefzbMATHGoogle Scholar
  18. 18.
    Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics. Springer, Berlin (2006).  https://doi.org/10.1007/978-3-662-03359-3CrossRefzbMATHGoogle Scholar
  19. 19.
    Tsai, Y.H.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tsitsiklis, J.: Fast marching methods. IEEE Trans. Autom. Control 40, 1528–1538 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander G. Churbanov
    • 1
  • Petr N. Vabishchevich
    • 1
    • 2
    Email author
  1. 1.Nuclear Safety InstituteRussian Academy of SciencesMoscowRussia
  2. 2.North–Eastern Federal UniversityYakutskRussia

Personalised recommendations