Generalized Multiscale Finite Element Method for Elasticity Problem in Fractured Media

  • V. AlekseevEmail author
  • A. Tyrylgin
  • M. Vasilyeva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11386)


In this work, we consider the elasticity problem in fractured media. For the efficient numerical solution, we present a Generalized Multiscale Finite Element Method (GMsFEM). GMsFEM is used for the construction of a coarse grid approximation of the problem by solution of the local spectral problems. We consider two types of the multiscale basis functions: (1) CG-GMsFEM with continuous multiscale basis functions and (2) DG-GMsFEM with discontinuous multiscale basis functions. The result of the numerical solution for the two-dimensional model problem is presented to show the performance of the presented multiscale method for fractured media. We compute error between the multiscale solution with the fine-scale solutions by choosing different numbers of multiscale basis functions.


Fractured media Elasticity problem Discontinuous Galerkin Multiscale method GMsFEM 



This work is supported by the grant of the Russian Scientific Found (N 17-71-20055).


  1. 1.
    Grechka, V., Kachanov, M.: Effective elasticity of fractured rocks: a snapshot of the work in progress. Geophysics 71(6), W45–W58 (2006)CrossRefGoogle Scholar
  2. 2.
    Nikolaevskij, V.N.: Mechanics of Porous and Fractured Media. World Scientific, Singapore (2014)Google Scholar
  3. 3.
    Coates, R.T., Schoenberg, M.: Finite-difference modeling of faults and fractures. Geophysics 60, 1514–1526 (1995)CrossRefGoogle Scholar
  4. 4.
    Schoenberg, M., Sayers, C.M.: Seismic anisotropy of fractured rock. Geophysics 60, 204–211 (1995)CrossRefGoogle Scholar
  5. 5.
    Chung, E.T., Efendiev, Y., Fu, S.: Generalized multiscale finite element method for elasticity equations. GEM-Int. J. Geomath. 5, 225–254 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chung, E.T., Efendiev, Y., Gibson, R.L., Vasilyeva, M.: A generalized multiscale finite element method for elastic wave propagation in fractured media. GEM-Int. J. Geomath. 7, 163–182 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phy. 251, 116–135 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hou, T., Efendiev, Y.: Multiscale Finite Element Methods. Theory and Applications. Springer, New York (2009). Scholar
  9. 9.
    Efendiev, Y., Galvis, J., Lazarov, R., Moon, M., Sarkis, M.: Generalized multiscale finite element method Symmetric interior penalty coupling. J. Comput. Phys. 255, 1–15 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chung, E.T., Efendiev, Y., Leung, W.T.: An online generalized multiscale discontinuous Galerkin method (GMsDGM) for flows in heterogeneous media. Commun. Comput. Phys. 21, 401–422 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chung, E.T., Efendiev, Y., Vasilyeva, M., Wang, Y.: A multiscale discontinuous Galerkin method in perforated domains. In: Proceedings of the Institute of Mathematics and Mechanics (2016)Google Scholar
  12. 12.
    Riviere, B., et al.: Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numer. Math. 95, 347–376 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chung, E.T., et al.: Online adaptive local multiscale model reduction for heterogeneous problems in perforated domains. Appl. Anal. 96, 2002–2031 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. Elsevier, New York City (2008)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Multiscale Model Reduction LaboratoryNorth-Eastern Federal UniversityYakutskRussia
  2. 2.Institute for Scientific ComputationTexas A&M UniversityCollege StationUSA

Personalised recommendations