From the Problem of Space to the Epistemology of Science: Hermann Weyl’s Reflection on the Dimensionality of the World

  • Silvia De BianchiEmail author
Part of the Studies in History and Philosophy of Science book series (AUST, volume 49)


In analyzing the problem of space from 1917 to 1923, Hermann Weyl confronted with the philosophical underpinnings of the theories of space. Weyl endorsed the distinction between the question of the essence of space and the question of its objective representation, a distinction that many philosophers, such as Ernst Cassirer, inherited from Immanuel Kant’s philosophy. However, Weyl aimed to offer a reliable alternative to Kant’s transcendental idealism of space and time, by means of mathematics and symbolic construction. The consequences of this move will be analyzed in Weyl’s reflection on the epistemology of science after the 1920s and in his late works, with emphasis on his “Why is the World Four-Dimensional?” (1955): a signature of the fact that the problem of space had open questions that engaged the mathematical physicist throughout his entire life.



The research leading to this chapter has been made possible thanks to the fellowship “Research in Paris 2013” offered by the Ville de Paris and to the FP7-COFUND program Beatriu de Pinós (grant n. 2013BP-B00101). The research has been made possible also thanks to the projects 2014 SGR 1410 sponsored by the AGAUR and HAR2014-57776 sponsored by MINECO. I am grateful to Monica Bussmann and to the Staff at the ETH in Zurich, who assisted me in visiting the archives in October 2014. I am very thankful to Julien Bernard and Carlos Lobo who invited me to present the earlier draft of this paper at the workshop Weyl and the Problem of Space, From Science to Philosophy (Konstanz, 27-29 May 2015).


  1. Barrow, J., and F. J. Tipler. 1986. The anthropic cosmological principle. Oxford: Clarendon Press.Google Scholar
  2. Bell, J. 2004. Hermann Weyl’s later philosophical views: his divergence from Husserl. In Husserl and the sciences, ed. R. Feist, 173–185. Ottawa: University of Ottawa Press.Google Scholar
  3. Bergmann, P.G. 1992. The riddle of gravitation. New York: Courier.Google Scholar
  4. Bernard, J. 2015. Becker–Blaschke problem of space. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52: 251–266.CrossRefGoogle Scholar
  5. Cassirer, E. 1923. Substance and function and Einstein’s theory of relativity. Chicago: The Open Court Publishing Company.Google Scholar
  6. Coleman, R.A., and H. Korté. 1984. Constraints on the nature of inertial motion arising from the universality of free fall and the conformal causal structure of spacetime. The Journal of Mathematical Physics 25 (12): 3513–3526.CrossRefGoogle Scholar
  7. De Bianchi, S., and J.D. Wells. 2015. Explanation and the dimensionality of space. Synthese 192 (1): 287–303.CrossRefGoogle Scholar
  8. Feist, R. 2004. Husserl and Weyl: Phenomenology, mathematics, and physics. In Husserl and the sciences, ed. R. Feist, 153–172. Ottawa: University of Ottawa Press.Google Scholar
  9. Husserl, E. [1913]1983. Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy. First Book. Trans F. Kersten. The Hague: Martinus Nijhoff.Google Scholar
  10. ———. [1936] 1970. The Crisis of European Sciences and Transcendental Phenomenology: An Introduction to Phenomenological Philosophy. Ed. and Trans. D. Carr, 1954; reprint. Evanston: Northwestern University Press.Google Scholar
  11. Itin, Y., and F.W. Hehl. 2004. Is the Lorentz signature of the metric of spacetime electromagnetic in origin? Annals of Physics 312: 60–83.CrossRefGoogle Scholar
  12. Kant, I. [1787]1998. Critique of Pure Reason. Ed. P. Guyer. Cambridge: Cambridge University Press.Google Scholar
  13. Lobo, C. 2009. Mathématicien philosophe et philosophe mathématicien, introduction et annotation de la correspondance Husserl-Weyl et Becker-Weyl. Annales de phénoménologie 8: 205–226; 227–252.Google Scholar
  14. Majer, U. 1998. Knowledge by symbolic constructions. In Philosophy and the many faces of science, ed. D. Anapolitanos, A. Baltas, and S. Tsinorema, 40–64. Lanham: Rowman & Littlefield.Google Scholar
  15. Mancosu, P., and T. Ryckman. 2002. Mathematics and phenomenology: The correspondence between O. Becker and H. Weyl. Philosophia Mathematica 10: 130–202.CrossRefGoogle Scholar
  16. McCall, S. 2006. Philosophical consequences of the twins paradox. In The ontology of spacetime, ed. D. Dieks, 191–204. Amsterdam: Elsevier.CrossRefGoogle Scholar
  17. Mittelstaedt, P., and P.A. Weingartner. 2005. Laws of nature. Berlin: Springer.CrossRefGoogle Scholar
  18. Ryckman, T. 2005. The reign of relativity. Oxford: Oxford University Press.CrossRefGoogle Scholar
  19. Scheibe, E. 1957. Über das Weylsche Raumproblem. Journal für Mathematik 197 (3/4): 162–207. (Dissertation Göttingen 1955).Google Scholar
  20. ———. 1988. Hermann Weyl and the nature of spacetime. In Exact sciences and their philosophical foundations: Exakte Wissenschaften und ihre philosophische Grundlegung. Vorträge des internationalen Hermann-Weyl-Kongresses, ed. Wolfgang Deppert and Kurt Hübner, 61–82. Frankfurt/M/Bern: Peter Lang Verlag.Google Scholar
  21. ———. 2001. Between rationalism and empiricism. Selected papers in the philosophy of physics. New York/Berlin/Heidelberg: Springer.Google Scholar
  22. Scholz, E. 2004. Hermann Weyl’s analysis of the “problem of space” and the origin of gauge structures. Science in Context 17: 165–197.CrossRefGoogle Scholar
  23. ———. 2011. H. Weyl’s and E. Cartan’s proposals for infinitesimal geometry in the early 1920s. Boletim da Sociedada Portuguesa de Matemàtica Número Especial A. da Mira Fernandes, 225–245.Google Scholar
  24. ———. 2012. Leibnizian traces in H. Weyl’s “Philosophie der Mathematik und Naturwissenschaft”. In New essays on Leibniz reception, ed. R. Krömer and Y. Chin-Drian, 203–216. Basel: Birkhäuser.CrossRefGoogle Scholar
  25. Sieroka, N. 2007. Weyl’s ‘agens theory’ of matter and the Zurich Fichte. Studies in History and Philosophy of Science 38: 84–107.CrossRefGoogle Scholar
  26. Sklar, L. 1974. Space, time, and spacetime. Berkeley: University of California Press.Google Scholar
  27. ———. 1977. Facts, conventions and assumptions. In Foundations of space-time theories, volume VIII of Minnesota Studies in the Philosophy of Science, ed. J. Earman, C.N. Glymour, and J.J. Stachel, 206–274. Minneapolis: University of Minnesota Press.Google Scholar
  28. Torretti, R. 1983. Causality and spacetime structure. In Physics, philosophy and psychoanalysis: Essays in Honor of Adolf Grünbaum, ed. R.S. Cohen, 273–294. Dordrecht: Reidel.CrossRefGoogle Scholar
  29. Weinert, F. 2005. The scientist as philosopher: Philosophical consequences of great scientific discoveries. Springer.Google Scholar
  30. Weyl, H. 1918. Reine Infinitesimalgeometrie. Mathematische Zeitschrift 2: 384–411.CrossRefGoogle Scholar
  31. ———. 1921. Zur Infinitesimalgeometrie: Einordnung der projektiven und konformen Auffassung. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen; Mathematisch-physikalische Klasse, 99–112.Google Scholar
  32. ———. 1922a. Space-Time-Matter (from the 4th German edition), London.Google Scholar
  33. ———. 1922b. Das Raumproblem. Jahresbericht der Deutschen Mathematikervereinigung 31: 205–221.Google Scholar
  34. ———. 1922c. Die Einzigartigkeit der Pythagoreischen Maßbestimmung. Mathematische Zeitschrift 12: 114–146.CrossRefGoogle Scholar
  35. ———. 1923. Mathematische Analyse Des Raumproblems. Berlin: Springer.CrossRefGoogle Scholar
  36. ———. 1930. Weyl levels of infinity. In Levels of infinity, selected writings on mathematics and philosophy, ed. P. Pesic, 17–32. New York: Dover.Google Scholar
  37. ———. 1931a. Geometrie und Physik. Die Naturwissenschaften 19: 49–58.CrossRefGoogle Scholar
  38. ———. 1931b. Theory of groups and quantum mechanics. New York: Dover.Google Scholar
  39. ———. 1940. The mathematical way of thinking. In Levels of infinity, selected writings on mathematics and philosophy, ed. P. Pesic, vol. 2012, 67–84. New York: Dover.Google Scholar
  40. ———. 1948. ETH-Bibliothek, University Archives, Hs 91a:31, Similarity and congruence: A chapter in the epistemology of science.Google Scholar
  41. ———. 1949. Philosophy of mathematics and natural science. Vol. 2, 35–37. Princeton: Princeton University Press.Google Scholar
  42. ———. 1955a. Insight and Reflection. In Mind and nature, selected writings on philosophy, mathematics, and physics, ed. P. Pesic, vol. 2009, 204–221. Princeton: Princeton University Press.Google Scholar
  43. ———. 1955b. Why is the world four-dimensional? In Levels of infinity, selected writings on mathematics and philosophy, ed. P. Pesic, vol. 2012, 203–216. New York: Dover.Google Scholar
  44. Winnie, J.A. 1977. The causal theory of space-time. In Foundations of space-time theories, volume VIII of Minnesota Studies in the Philosophy of Science, ed. J. Earman, C.N. Glymour, and J.J. Stachel, 134–205. Minneapolis: University of Minnesota Press.Google Scholar
  45. Zeeman, E.C. 1964. Causality implies the Lorentz group. Journal of Mathematical Physics 5 (4): 490–493.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations