Advertisement

Intuition and Conceptual Construction in Weyl’s Analysis of the Problem of Space

  • Francesca BiagioliEmail author
Chapter
Part of the Studies in History and Philosophy of Science book series (AUST, volume 49)

Abstract

Hermann Weyl adopted the Kantian definition of space as a form of intuition and referred to Edmund Husserl’s phenomenological approach for the philosophical characterization of space in the introduction to Raum-Zeit-Materie (1918) and other writings from the same period (1918–1923). At the same time, Weyl emphasized that subjective factors are completely excluded from the mathematical construction of physical reality in Albert Einstein’s general theory of relativity, with the sole exception of the setting of a coordinate system, which for Weyl is what remains of the original perspective of the self in becoming aware of one’s own intuitions. This paper reconsiders Weyl’s philosophical position as a possible response to the earlier debate on the relation between intuition and conceptual construction in the foundation of geometry, key figures of which, besides Husserl, included Hermann von Helmholtz, Felix Klein, and Moritz Schlick.

Keywords

Classical and relativistic problems of space Form of intuition Hermann von Helmholtz Hermann Weyl 

Notes

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 715222). Prior to this, research leading to this paper was carried out within the project “Mathematical and Transcendental Method in Ernst Cassirer’s Philosophy of Science”, funded by the Marie Curie Actions in co-funding with the Zukunftskolleg at the University of Konstanz. I wish to thank Julien Bernard, Carlos Lobo, Silvia De Bianchi, Paola Cantù, Thomas Ryckman and Georg Schiemer for helpful comments and discussions of this material.

References

  1. Beltrami, Eugenio. 1869. Teoria fondamentale degli spazi a curvatura costante. In Opere Matematiche 1, 406–429. Milano: Hoepli. 1902.Google Scholar
  2. Biagioli, Francesca. 2014a. Hermann Cohen and Alois Riehl on geometrical empiricism. HOPOS: The Journal of the International Society for the History of Philosophy of Science 4: 83–105.Google Scholar
  3. ———. 2014b. What does it mean that ‘space can be transcendental without the axioms being so’? Helmholtz’s claim in context. Journal for General Philosophy of Science 45: 1–21.CrossRefGoogle Scholar
  4. ———. 2016. Space, number, and geometry from Helmholtz to Cassirer. Cham: Springer.CrossRefGoogle Scholar
  5. Birkhoff, Garrett, and Mary Katherine Bennett. 1988. Felix Klein and his Erlanger Programm (Please reintroduce capital letters as shown in my original manuscript. This and the other instances marked below are German nouns, which are always written with capital letters, whether they occur in a title or in a sentence). In History and philosophy of modern mathematics, ed. William Aspray and Philip Kitcher, 144–176. Minneapolis: University of Minnesota Press.Google Scholar
  6. Boi, Luciano, Livia Giancardi, and Rossana Tazzioli, eds. 1998. La découverte de la géométrie non euclidienne sur la pseudosphère: Les lettres d’Eugenio Beltrami à Joules Hoüel; (1868–1881). Paris: Blanchard.Google Scholar
  7. Coleman, Robert A., and Herbert Korté. 2001. Hermann Weyl: Mathematician, physicist, philosopher. In Hermann Weyl’s Raum-Zeit-Materie and a general introduction to his scientific work, ed. Erhard Scholz, 161–386. Basel: Birkhäuser.Google Scholar
  8. DiSalle, Robert. 1993. Helmholtz’s empiricist philosophy of mathematics: Between laws of perception and laws of nature. In Hermann von Helmholtz and the foundations of nineteenth-century science, ed. David Cahan, 498–521. Berkeley: University of California Press.Google Scholar
  9. ———. 2008. Understanding space-time: The philosophical development of physics from Newton to Einstein. Cambridge: Cambridge University Press.Google Scholar
  10. Erdmann, Benno. 1877. Die Axiome der Geometrie: Eine philosophische Untersuchung der Riemann-Helmholtz’schen Raumtheorie. Leipzig: Voss.Google Scholar
  11. Friedman, Michael. 1997. Helmholtz’s Zeichentheorie and Schlick’s Allgemeine Erkenntnislehre: Early logical empiricism and its nineteenth-century background. Philosophical Topics 25: 19–50.CrossRefGoogle Scholar
  12. Hawkins, Thomas. 1984. The Erlanger Programm of Felix Klein: Reflections on its place in the history of mathematics. Historia Mathematica 11: 442–470.CrossRefGoogle Scholar
  13. Helmholtz, Hermann v. 1868. Über die Tatsachen, die der Geometrie zugrunde liegen. In Helmholtz (1921/1977), 38–55.Google Scholar
  14. ———. 1870. Über den Ursprung und die Bedeutung der geometrischen Axiome. In Helmholtz (1921/1977), 1–24.Google Scholar
  15. ———. 1878a. Die Tatsachen in der Wahrnehmung. In Helmholtz (1921/1977), 109–152.Google Scholar
  16. ———. 1878b. The origin and meaning of geometrical axioms. Part 2. Mind 3: 212–225.CrossRefGoogle Scholar
  17. ———. 1883. Wissenschaftliche Abhandlungen. Vol. 2. Leipzig: Barth.Google Scholar
  18. ———. 1887. Zählen und Messen, erkenntnistheoretisch betrachtet. In Helmholtz (1921/1977), 70–97.Google Scholar
  19. ———. 1921/1977. Schriften zur Erkenntnistheorie, ed. Paul Hertz and Moritz Schlick. Berlin: Springer. English edition: Helmholtz, Hermann von. 1977. Epistemological writings, Trans. Lowe, Malcom F., ed. Robert S. Cohen and Yehuda Elkana. Dordrecht: Reidel.Google Scholar
  20. Hyder, David. 2009. The determinate world: Kant and Helmholtz on the physical meaning of geometry. Berlin: De Gruyter.Google Scholar
  21. Klein, Felix. 1871. Über die sogenannte Nicht-Euklidische Geometrie. Mathematische Annalen 4: 573–625.CrossRefGoogle Scholar
  22. ———. 1872. Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: Deichert.Google Scholar
  23. ———. 1890. Zur Nicht-Euklidischen Geometrie. Mathematische Annalen 37: 544–572.CrossRefGoogle Scholar
  24. ———. 1898. Gutachten, betreffend den dritten Band der Theorie der Transformationsgruppen von S. Lie anlässlich der ersten Vertheilung des Lobatschewsky-Preises. Mathematische Annalen 50: 583–600.CrossRefGoogle Scholar
  25. Königsberger, Leo. 1902–1903. Hermann von Helmholtz, vols. 3. Braunschweig: Vieweg.Google Scholar
  26. Land, Jan Pieter Nicolaas. 1877. Kant’s space and modern mathematics. Mind 2: 38–46.CrossRefGoogle Scholar
  27. Lenoir, Timothy. 2006. Operationalizing Kant: Manifolds, models, and mathematics in Helmholtz’s theories of perception. In The Kantian legacy in nineteenth-century science, ed. Michael Friedman and Alfred Nordmann, 141–210. Cambridge, MA: The MIT Press.Google Scholar
  28. Lie, Sophus. 1893. Theorie der Transformationsgruppen. Vol. 3. Leipzig: Teubner.Google Scholar
  29. Riemann, Bernhard. 1854/1867. “Über die Hypothesen, welche der Geometrie zu Grunde liegen.” Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13: 133–152.Google Scholar
  30. Rowe, David E. 1989. Klein, Hilbert, and the Göttingen mathematical tradition. Osiris 5: 186–213.CrossRefGoogle Scholar
  31. ———. 1992. Klein, Lie, and the Erlanger Programm. In 1830–1930: A century of geometry, epistemology, history and mathematics, ed. Luciano Boi, Dominique Flament, and Jean- Michel Salanskis, 45–54. Berlin: Springer.Google Scholar
  32. Ryckman, Thomas. 2005. The reign of relativity: Philosophy in physics, 1915–1925. New York: Oxford University Press.CrossRefGoogle Scholar
  33. Schlick, Moritz. 1918. Allgemeine Erkenntnislehre. Berlin: Springer.Google Scholar
  34. Scholz, Erhard. 2001. Weyl’s Infinitesimalgeometrie, 1917–1925. In Hermann Weyl’s Raum-Zeit-Materie and a general introduction to his scientific work, ed. Erhard Scholz, 48–104. Basel: Birkäuser.CrossRefGoogle Scholar
  35. ———. 2004. Hermann Weyls analysis of the problem of space and the origin of gauge structures. Science in Context 17: 165–197.CrossRefGoogle Scholar
  36. ———. 2005. Local spinor structures in V. Fock’s and H. Weyl’s work on the Dirac equation (1929). In Géométrie au XXe siècle, 1930–2000: histoire et horizons, ed. Joseph Kouneiher, Philippe Nabonnand, and Jean-Jacques Szczeciniarz, 284–301. Montréal: Presses internationales Polytechnique.Google Scholar
  37. ———. 2013. The problem of space in the light of relativity: The views of H. Weyl and E. Cartan. E-Print: https://arxiv.org/abs/1310.7334, accessed on March 8, 2019)
  38. Sigurdsson, Skuli. 1994. Unification, geometry and ambivalence: Hilbert, Weyl and the Göttingen community. In Trends in the historiography of science, ed. Kostas Gavroglu, Jean Christianidis, and Efthymios Nicolaidis, 355–367. Dordrecht: Springer.CrossRefGoogle Scholar
  39. Torretti, Roberto. 1978. Philosophy of geometry from Riemann to Poincaré. Dordrecht: Reidel.CrossRefGoogle Scholar
  40. Weyl, Hermann. 1918. Das Kontinuum: Kritische Untersuchungen über die Grundlagen der Analysis. Leipzig: Veit.Google Scholar
  41. ———. 1921/1952. Raum-Zeit-Materie: Vorlesungen über allgemeine Relativitätstheorie, 4th ed. Berlin: Springer. English edition: Weyl, Hermann. Space-time-matter. Trad. Henry L. Brose. New York: Dover, 1952.Google Scholar
  42. ———. 1923. Mathematische Analyse des Raumproblems. Berlin: Springer.CrossRefGoogle Scholar
  43. ———. 1949. Philosophy of mathematics and natural science. Princeton: University Press. Trad. Helmer, Olaf. An expanded English version of Philosophie der Mathematik und Naturwissenschaft, München, Leibniz Verlag, 1927.CrossRefGoogle Scholar
  44. ———. 2015. L’analyse mathématique du problème de l’espace, ed. Éric Audureau and Julien Bernard. Aix-en-Provence: Presses universitaires de Provence.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of ViennaViennaAustria

Personalised recommendations