Advertisement

The Plasticine Ball Argument

Hermann Weyl, the Homogeneity of Space and Mach’s Principle
  • Julien Bernard
Chapter
Part of the Studies in History and Philosophy of Science book series (AUST, volume 49)

Abstract

Hermann Weyl’s work is difficult to classify as physics, mathematics, philosophy or history of science. Perhaps because of his wide audience, perhaps also because of his aesthetic preferences, Weyl likes to use analogies and metaphors in order to provide insights about the most difficult and abstract problems of the twentieth-century science.

Keywords

Hermann Weyl Mach’s principle History of general relativity Philosophy of space Gravitational ether 

References

  1. Afriat, Alexander. 2009. How Weyl Stumbled across electricity while pursuing mathematical justice. Studies in History and Philosophy of Science Part B 40(1):20–25.CrossRefGoogle Scholar
  2. Afriat, Alexander. 2010. The relativity of inertia and reality of nothing. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41:9–26.CrossRefGoogle Scholar
  3. Barbour, Julian, and Herbert Pfister. eds. 1995. Mach’s Principle. From Newton’s Bucket to Quantum Gravity. Einstein Studies. From the colloquium in Tübingen, July 1993. Boston: Birkhäuser.Google Scholar
  4. Bell, John L., and Herbert Korté. 2016. Hermann Weyl. In The Stanford encyclopedia of philosophy, ed. Edward N. Zalta, Winter 2016. Metaphysics Research Lab, Stanford University.Google Scholar
  5. Bergia, Silvio, and Lucia Mazzoni. 1999. Genesis and evolution of Weyl’s reflections on de Sitter’s universe. In The expanding worlds of general relativity. Einstein Studies 7, ed. Hubert Goenner and et al., 325–342. Boston/Basel/Berlin: Birkhäuser.CrossRefGoogle Scholar
  6. Bernard, Julien. 2010. Les fondements épistémologiques de la Nahegeometrie d’HermannWeyl. Ph.D. thesis. Université de Provence, http://tel.archives-ouvertes.fr/tel-00651772
  7. Bernard, Julien. 2013. L’idéalisme dans l’infinitésimal. Weyl et l’espace à l’époque de la relativité. Prix Paul Ricœur 2012. Presses Universitaires de Paris Ouest, 2013. ISBN:2840161311.Google Scholar
  8. Bernard, Julien. 2015a. Becker-Blaschke Problem of Space. Studies in History and Philosophy of Modern Physics, Part B 52:251–266.CrossRefGoogle Scholar
  9. Bernard, Julien. 2015b. Les tapuscrits barcelonais sur le problème de l’espace de Weyl. Revue d’Histoire des Mathématiques 21:147–167.Google Scholar
  10. Bernard, Julien. 2018. Riemann’s and Helmholtz-Lie’s problems of space from Weyl’s relativistic perspective. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 61:41–56. (S. De Bianchi and G. Catren, Elsevier Bv).Google Scholar
  11. Bitbol, Michel, Pierre Kerszberg, and Jean Petitot. 2010. Constituting objectivity: Transcendental perspectives on modern physics. The Western Ontario series in philosophy of science, vol. 74. Dordrecht: Springer.Google Scholar
  12. Cartan, Élie. 1925. La théorie des groupes et les recherches récentes en géométrie différentielle. Ens. Math. 24. Conférence faite au Congrès de Toronto en 1924, 1–18.Google Scholar
  13. Cassirer, Ernst. 1910. Substance and Function. Dover Books on Mathematics Series. New York: Dover Publications.Google Scholar
  14. Cassirer, Ernst. 1923. Einstein’s theory of relativity, considered from the epistemological point of view. In Substance and function and Einstein’s theory of relativity, ed. W.C. Swabey, and M.T. Swabey. Chicago: Open Court.Google Scholar
  15. Choquet-Bruhat, Yvonne. 1952. Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. In Acta Mathematica, 1st ser. 88, 141–225.Google Scholar
  16. Choquet-Bruhat, Yvonne. 1969. Problème de Cauchy global en relativité générale. Séminaire Jean Leray 2:1–7.Google Scholar
  17. Choquet-Bruhat, Yvonne, and Robert Geroch. 1969. Global aspects of the Cauchy problem in general relativity. Communications in Mathematical Physics 14(4):329–335.CrossRefGoogle Scholar
  18. Chorlay, Renaud. 2009. Passer au global: le cas d’élie Cartan, 1922–1930. Revue d’histoire des mathématiques 15:231–316.Google Scholar
  19. Coffa, J. Alberto. 1979. Elective affinities: Weyl and Reichenbach. In Hans Reichenbach: Logical empiricist, ed. Wesley C. Salmon, vol. 132, 267–304. Dordrecht: Springer Netherlands.Google Scholar
  20. Coleman, Robert, and Herbert Korté. 2001. Hermann Weyl: Mathematician, physicist, philosopher. 4.11 the laws of motion and Mach’s principle. In Hermann Weyl’s Raum Zeit Materie and a general introduction to his scientific work, ed. Erhard Scholz. §II. 4.5–4.7, 262–270.Google Scholar
  21. Georges Darmois. 1927. Les équations de la gravitation einsteinienne. Mém. Sc. Math. 25.Google Scholar
  22. Eckes, Christophe. 2011. Groupes, invariants et géométries dans l’œuvre de Weyl. Ph.D. thesis, Université Jean Moulin Lyon 3.Google Scholar
  23. Einstein, Albert. 1915. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. In Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 831–839.Google Scholar
  24. Einstein, Albert. 1916. Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik und Chemie.Google Scholar
  25. Einstein, Albert. 1917. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. In Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 142–152.Google Scholar
  26. Einstein, Albert. 1918. Prinzipielles zur allgemeinen Relativitätstheorie. Annalen der Physik 55:241–244.CrossRefGoogle Scholar
  27. Einstein, Albert. 1920. Äther und Relativitätstheorie, 18. Berlin: Springer.CrossRefGoogle Scholar
  28. Einstein, Albert, and Marcel Grossman. 1913. Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Leipzig: B.G.Teubner.Google Scholar
  29. Giovanelli, Marco. 2013a. Erich Kretschmann as a proto-logical-empiricist: Adventures and misadventures of the point-coincidence argument. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44:115–134.CrossRefGoogle Scholar
  30. Giovanelli, Marco. 2013b. Leibniz equivalence. On Leibniz’s (Bad) influence on the logical empiricist interpretation of general relativity. From a preprint, Unpublished.Google Scholar
  31. Iftime, Mihaela, and John Stachel. 2006. The hole argument for covariant theories. General Relativity and Gravitation 38:1241–1252.CrossRefGoogle Scholar
  32. Pierre Kerszberg. 1986. Le principe de Weyl et l’invention d’une cosmologie non-statique. Archive for History of Exact Sciences 35(1):1–89.CrossRefGoogle Scholar
  33. Pierre Kerszberg. 1989. The Einstein-de Sitter controversy of 1916–1917 and the rise of relativistic cosmology. In Einstein and the history of general relativity, ed. D. Howard and John Stachel, 1–325. Boston: Birkhäuser.Google Scholar
  34. Laugwitz, Detlef. 1958. Über eine Vermutung von Hermann Weyl zum Raumproblem”. Archiv der Mathematik 9:128–133.CrossRefGoogle Scholar
  35. Lense, Josef, and Hans Thirring. 1918. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:156–163.Google Scholar
  36. Mancosu, Paolo, and Thomas Ryckman. 2005. Geometry, physics and phenomenology: The correspondence between O. Becker and H. Weyl. In Die Philosophie und die Mathematik: Oskar Becker in der mathematischen Grundlagendiskussion, ed. Volker Peckhaus, 152–228.Google Scholar
  37. Michel, Alain. 2006. La fonction de l’histoire dans la pensée mathématique et physique d’Hermann Weyl. In Kairos, 27.Google Scholar
  38. Norton, John D. 1987. Einstein, the hole argument and the reality of space. In Measurement, realism, and objectivity, Australasian studies in history and philosophy of science, vol. 5, 153–188. Dordrecht/Boston: D. Reidel.Google Scholar
  39. Norton, John D. 1993. General covariance and the foundations of general relativity: Eight decades of dispute. Reports of Progress in Physics 56:791–861. Institute of Physics.Google Scholar
  40. Norton, John. 1999. The hole argument. In The Stanford encyclopedia of philosophy fall, 2015 ed. https://plato.stanford.edu/archives/fall2015/entries/spacetime-holearg/>
  41. Poincaré, H. 1902. La science et l’hypothèse. Bibliothèque de philosophie scientifique, New edition: 2000. E. Flammarion.Google Scholar
  42. Reinhardt, Michael. 1973. Mach’s principle – a critical review. Zeitschrift für Naturforschung A. 28(3–4):529–537.Google Scholar
  43. Renn, J. 2007. The genesis of general relativity: Sources and interpretations. Boston studies in the philosophy and history of science. Dordrecht/London: Springer.Google Scholar
  44. Riemann, Bernhard. 1919. Über die Hypothesen, welche der Geometrie zu Grunde liegen, ed. H. Weyl with critical notes, 1st ed. Springer.Google Scholar
  45. Ryckman, Thomas. 2009. Hermann Weyl and ‘First Philosophy’: Constituting Gauge invariance. In The Western Ontario series in philosophy of science, ed. Michel Bitbol, Kerszberg Pierre, and Petitot Jean, vol. 74, 279–298. Dordrecht: Springer.Google Scholar
  46. Scholz, Erhard. 2004. Hermann Weyl’s analysis of the “Problem of Space” and the origin of Gauge. In Structures. Science in context, 165–197.Google Scholar
  47. Scholz, Erhard. 2012. H. Weyl’s and E. Cartan’s proposals for infinitesimal geometry in the early 1920s. Newsletter European Mathematical Society 84:22–30.Google Scholar
  48. Scholz, Erhard. 2018. The unexpected resurgence of Weyl geometry in late 20th-century physics. In Beyond Einstein: Perspectives on geometry, gravitation, and cosmology in the twentieth century, ed. D.E. Rowe, T. Sauer, and S.A. Walter. Einstein studies, 261–360. New York: Springer. ISBN:9781493977062.Google Scholar
  49. Scholz, Erhard. 2019. The changing faces of the problem of space in the work of Hermann Weyl. In Weyl and the problem of space, Studies in History and Philosophy of Science 49, ed. J. Bernard and C. Lobo. Cham: Springer.Google Scholar
  50. Schwarzschild, Karl. 1916a. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. In Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 189–196.Google Scholar
  51. Schwarzschild, Karl. 1916b. Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit. In Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 424–434.Google Scholar
  52. Stachel, John. 1969. Specifying sources in general relativity. Physical Review 180:1256.CrossRefGoogle Scholar
  53. Stachel, John. 1989. Einstein’s search for general covariance. In Einstein and the history of general relativity. Einstein’s studies, vol. I, 63–100. Boston: Birkhäuser.Google Scholar
  54. Stachel, John. 1993. The meaning of general covariance: The hole story. In Philosophical problems of the internal and external worlds, ed. John Earman and et al., 129–160. Pittsburgh: University of Pittsburg Press.CrossRefGoogle Scholar
  55. Thirring, Hans. 1918. Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:33–sq.Google Scholar
  56. Thirring, Hans. 1921. Berichtigung zu meiner Arbeit: Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 22:29–30.Google Scholar
  57. Torretti, Roberto. 1983. Relativity and geometry. Foundations, philosophy of science, technology. New York: Pergamon Press.Google Scholar
  58. Weyl, Hermann. 1918a. Gravitation und Elektrizität. In Sitzungsberichte des Königlichen Preußischen Akademie des Wissenschaften zu Berlin, 465–480.Google Scholar
  59. Weyl, Hermann. 1918b. Raum, Zeit, Materie, 1st ed. Berlin: Julius Springer.Google Scholar
  60. Weyl, Hermann. 1919a. Raum, Zeit, Materie, 3rd ed. Berlin: Julius Springer.CrossRefGoogle Scholar
  61. Weyl, Hermann. 1919b. Bemerkung über die axialsymmetrischen Lösung der Einsteinschen Gravitationsgleichungen. Annalen der Physik 364(10): 185–188.CrossRefGoogle Scholar
  62. Weyl, Hermann. 1921. Raum, Zeit, Materie, 4th ed. Berlin: Julius Springer.CrossRefGoogle Scholar
  63. Weyl, Hermann. 1923. Mathematische Analyse des Raumproblems. Vorlesungen gehalten in Barcelona und Madrid. Berlin: Julius Springer.CrossRefGoogle Scholar
  64. Weyl, Hermann. 1924. Massenträgheit und Kosmos. Ein Dialog. Naturwissenschaften 12:197–204.CrossRefGoogle Scholar
  65. Weyl, Hermann. 1934. Mind and nature. Selected writings on philosophy, mathematics, and physics (2009). Princeton University Press.Google Scholar
  66. Weyl, Hermann. 1949. Philosophy of mathematics and natural science. From an article of 1927. Princeton: Princeton University Press.Google Scholar
  67. Weyl, Hermann. 2010. Space, time, matter. Trans. H.L. Brose. From the 4th edition. New York: Cosimo Classics.Google Scholar
  68. Weyl, Hermann. 2015. L’analyse mathématique du problème de l’espace, ed. Julien Bernard and Eric Audureau. French-German commented edition of Weyl’s text, including discussions about Weyl’s original French tapuscripts from Barcelona. Two volumes. The pagination is the same as the original German edition. Presses Universitaires de Provence, Oct 2015. ISBN:979-1-03200-010-6.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Julien Bernard
    • 1
  1. 1.Assistant Professor in Philosophy, Centre Gilles Gaston Granger (CGGG) UMR 7304Aix-Marseille-UniversityMarseilleFrance

Personalised recommendations