Features of Logistic Terminal Complexes Functioning in the Transition to the Circular Economy and Digitalization

  • Irina MakarovaEmail author
  • Ksenia Shubenkova
  • Vadim Mavrin
  • Eduard Mukhametdinov
  • Aleksey Boyko
  • Zlata Almetova
  • Vladimir Shepelev
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)


Intellectualization is currently the main trend in the development of economy and society. The rational and sensible management and development of all activity spheres, including transportation and logistics, is connected with this concept. The transition to the fourth industrial revolution, the concepts of digitalization and the Internet of Things cannot be implemented without sustainable logistics. Development of technology in the era of Sustainable Development Goals implementation and rational resources consumption led to the formulation and new concept of economic development—the circular economy. This concept changes the paradigm of logistic processes organization, where reverse logistics, along with direct supply chains, becomes one of the elements of logistic chains. To ensure the efficiency of transport and related technological operations during the goods movement, new technologies are used at all stages of transportation. To achieve these goals, transport infrastructure is being created and improved, and one of the most important elements of this infrastructure are the transport terminals. The paper discusses the modern concepts of intermodal transport and the role of transport terminals in their implementation. The issues of terminal activity planning and process management, as well as determining the required capacity of terminal complexes are considered. Mathematical and simulation models for selecting parameters of intermodal transport systems have been developed, an example of organizing the supply of spare parts in the KAMAZ branded service system has been given (Case Study: Organization of the Automotive Spare Parts Supply).


Intermodal transportation Circular economy Industry 4.0 Transport terminals Supply chains Spare parts logistics 


  1. 1.
    Пaxoмoвa HB, Pиxтep КК, Beтpoвa MA (2017) Пepexoд к циpкyляpнoй экoнoмикe и зaмкнyтым цeпям пocтaвoк кaк фaктop ycтoйчивoгo paзвития. Becтник Caнкт-Пeтepбypгcкoгo Унивepcитeтa. Экoнoмикa. 33(2):244–268. [In Russian: Pakhomova NV, Richter KK, Vetrova MA. Transition to circular economy and closed-loop supply chains as driver of sustainable development. St Petersb Univ J Econ Stud]Google Scholar
  2. 2.
    Towards the circular economy. Volume 1: An economic and business rationale for an accelerated transition (2013).
  3. 3.
    Automotive parts remanufacturing market: global industry analysis and forecast 2017–2025 (2018).
  4. 4.
    Niknejad A, Petrovic D (2014) Optimisation of integrated reverse logistics networks with different product recovery routes. Eur J Oper Res 238(1):143–154MathSciNetCrossRefGoogle Scholar
  5. 5.
    Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Closing the loop—an EU action plan for the circular economy (2015).
  6. 6.
    Towards the circular economy: accelerating the scale-up across global supply chains (2014).
  7. 7.
    The growth of the circular economy: a 2016 UPS/GreenBiz research study (2016).
  8. 8.
    How can digital enable the transition to a more sustainable world? (2016).
  9. 9.
  10. 10.
  11. 11.
    Caterpillar logistics—supply chain solutions and logistic services (2018).
  12. 12.
  13. 13.
    PL (Third Party Logistics): everything you need to find the right shipping provider (2018).
  14. 14.
    Hamilton J (2004) E-logistics comparative positioning model: a multi-national enterprise airline study. In: The fourth international conference on electronic business (ICEB2004), pp 93–100Google Scholar
  15. 15.
    Ивaнoв ДA (2006) Лoгиcтикa. Cтpaтeгичecкaя кooпepaция. Mocквa – Bepшинa, p 176. [In Russian: Ivanov DA. Logistics. Strategic Cooperation, Moscow–Vershina]Google Scholar
  16. 16.
  17. 17.
    Contract Warehousing Ltd (2018).
  18. 18.
    TransLogix (2018) URL:
  19. 19.
    Oтдeл мapкeтингa ГК TELS. Уcпeть в бyдyщee! 5 ypoвнeй лoгиcтичecкoгo cepвиca (2012). [In Russian: Marketing Department of TELS. Catch the future! 5 levels of logistic service]
  20. 20.
    Contract Warehousing: 5PL—the way of the future (2018).
  21. 21.
  22. 22.
    Predictions for the future of third party logistics in 2020 (2011).
  23. 23.
  24. 24.
    Maersk CEO: autonomous box shipping ‘not in my time’ (2018).
  25. 25.
    Peзep CM, Лapин OH, Beндe Ф, Tapacoв ДЭ (2017) Moдeли фopмиpoвaния зaпacoв и pacчётa зaтpaт нa иx xpaнeниe в лoгиcтичecкиx цeнтpax. Интeллeкт. Иннoвaции. Инвecтиции. 6:63–70. [In Russian: Rezer SM, Larin OH, Wende F, Tarasov DE. Simulation of stocks and calculations of the cost of storing them in logistics centers. Intell Innov Invest]Google Scholar
  26. 26.
  27. 27.
    Alyahya S, Wang Q, Bennett N (2016) Application and integration of an RFID-enabled warehousing management system—a feasibility study. J Ind Inf Integr 4:15–25Google Scholar
  28. 28.
    Poon TC, Choy KL, Chow H, Lau H, Chan F, Ho KC (2009) A RFID case-based logistics resource management system for managing order-picking operations in warehouses. Expert Syst Appl 36:8277–8301CrossRefGoogle Scholar
  29. 29.
    Chen JC, Cheng CH, Huang PB (2013) Supply chain management with lean production and RFID application: a case study. Expert Syst Appl 40:3389–3397CrossRefGoogle Scholar
  30. 30.
    Fan N, Tao F, Deng S, Li S (2015) Impact of RFID technology on supply chain decisions with inventory inaccuracies. Int J Prod Econ 159:117–125CrossRefGoogle Scholar
  31. 31.
    Emerging technologies will change 3rd party logistics providers & supply chain forever (2016).
  32. 32.
    Goudarzi P, Malazi HT, Ahmadi M (2016) Khorramshahr: a scalable peer to peer architecture for port warehouse management system. J Netw Comput Appl 76:49–59CrossRefGoogle Scholar
  33. 33.
    Contour crafting inventor Dr. Khoshnevis: widespread 3D printed homes in 5 years, high-rises in 10 years (2015).
  34. 34.
  35. 35.
    Amazon files patent for mobile 3D printing delivery trucks (2015).
  36. 36.
  37. 37.
    Hugh Edwards Warehouse Operations Development Director of TABLOGIX has spoken about innovations in logistics (2014).
  38. 38.
    Lomotko DV, Alyoshinsky ES, Zambrybor GG (2016) Methodological aspect of the logistics technologies formation in reforming processes on the railways. Transp Res Procedia 14:2762–2766CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Lin CC, Chiang YI, Lin SW (2014) Efficient model and heuristic for the intermodal terminal location problem. Comput Oper Res 51:41–51MathSciNetCrossRefGoogle Scholar
  41. 41.
    Sörensen K, Vanovermeire C, Busschaert S (2012) Efficient metaheuristics to solve the intermodal terminal location problem. Comput Oper Res 39(9):2079–2090CrossRefGoogle Scholar
  42. 42.
    Crainic TG, Perboli G, Rosano M (2018) Simulation of intermodal freight transportation systems: a taxonomy. Eur J Oper Res 270:401–418MathSciNetCrossRefGoogle Scholar
  43. 43.
    Regmi MB, Hanaoka S (2012) Assessment of intermodal transport corridors: cases from North-East and Central Asia. Res Transp Bus Manag 5:27–37CrossRefGoogle Scholar
  44. 44.
    Lizbetina J, Caha Z (2016) Theoretical criteria for the evaluation of the operational performance of intermodal transport terminals. Procedia Eng 161:1197–1203CrossRefGoogle Scholar
  45. 45.
    Sarhadi H, Tulett DM, Verma M (2017) An analytical approach to the protection a planning of rail intermodal terminal network. Eur J Oper Res 257:511–525MathSciNetCrossRefGoogle Scholar
  46. 46.
    Huynh N, Uddin M, Minh CC (2017) Data analytics for intermodal freight transportation applications. Data Anal Intell Transp Syst 10:241–262CrossRefGoogle Scholar
  47. 47.
    Di Pierro B, Iacobellis G, Turchiano B, Ukovich W (2017) Performance assessment for intermodal transportation systems: a case study. In: 2017 IEEE international conference on service operations and logistics, and informatics, pp 236–241Google Scholar
  48. 48.
  49. 49.
    Agbo AA, Zhang Y (2017) Sustainable freight transport optimization through synchromodal networks. Cogent Eng 4(1):1–22. ISSN 2331-1916Google Scholar
  50. 50.
    Angeloudis P, Greco L, Bell M (2015) Strategic maritime container transport design in oligopolistic markets. Transp Res Procedia 9:269–282CrossRefGoogle Scholar
  51. 51.
    Angeloudis P, Greco L, Bell M (2016) Strategic maritime container service design in oligopolistic markets. Transp Res Part B Methodol 90:22–37CrossRefGoogle Scholar
  52. 52.
    Lee CY, Song DP (2017) Ocean container transport in global supply chains: overview and research opportunities. Transp Res Part B Methodol 95:442–474CrossRefGoogle Scholar
  53. 53.
    Ng MN (2015) Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand. Transp Res Part B Methodol B. 74:79–87CrossRefGoogle Scholar
  54. 54.
    Coronado Mondragon AE, Coronado Mondragon CE, Coronado ES (2017) ICT adoption in multimodal transport sites: investigating institutional-related influences in international seaports terminals. Transp Res Part A Policy Pract 97:69–88CrossRefGoogle Scholar
  55. 55.
    Zheng F, Man X, Chu F, Liu M, Chu C (2018) Two yard crane scheduling with dynamic processing time and interference. IEEE Trans Intell Transp Syst 1–10Google Scholar
  56. 56.
    Dong L, Yang Y, Sun S (2018) QCs scheduling scheme of genetic algorithm (GA) and improved firefly algorithm (FA). Clust Comput 1–18. ISSN 1386-7857Google Scholar
  57. 57.
    Teye C, Bell M, Bliemer M (2017) Urban intermodal terminals: the entropy maximising facility location problem. Transp Res Part B Methodol 100:64–81CrossRefGoogle Scholar
  58. 58.
    Rakhmangulov A, Sładkowski A, Osintsev N, Mishkurov P, Muravev D (2017) Dynamic optimization of railcar traffic volumes at railway nodes. In: Sładkowski A (ed) Rail transport—systems approach. Studies in systems, decision and control, vol 87. Springer, Cham, pp 405–454. ISBN 978-3-319-51501-4CrossRefGoogle Scholar
  59. 59.
    The Northern Sea route is open for container ships (2013).
  60. 60.
    Oжидaeтcя взpывнoй pocт кoнтeйнepнoгo тpaнзитa Китaй — EAЭC — Eвpocoюз (2018). [In Russian: Expected explosive growth in container transit China–EAEU–EU]
  61. 61.
    International experience of creating transport and logistics clusters (2017).
  62. 62.
    Gattuso D, Cassone GC, Lucisano A, Lucisano M, Lucisano F (2017) Automated rail wagon for new freight transport opportunities. In: 2017 5th IEEE international conference on models and technologies for intelligent transportation systems (MT-ITS), pp 57–62Google Scholar
  63. 63.
    “New Chinese Dragons”: a global economic alternative is being born (2015).
  64. 64.
    Fedtke S, Boysen N (2017) A comparison of different container sorting systems in modern rail-rail transshipment yards. Transp Res Part C 82:63–87CrossRefGoogle Scholar
  65. 65.
    Rail intermodal keeps America moving—AAR (2016).
  66. 66.
  67. 67.
    Monios J, Lambert B (2013) Intermodal Freight Corridor Development in the United States. In: Dry ports: a global perspective, pp 197–218Google Scholar
  68. 68.
  69. 69.
    Part of a double-stack train, with 53-foot containers (2018).
  70. 70.
    Cбopныe гpyзы или кoнтeйнepныe пepeвoзки (2018). [In Russian: Groupage cargo or container shipping]
  71. 71.
    Intermodal and combined transport portals and statistics (2016).
  72. 72.
    Heilig L, Voß S (2017) Inter-terminal transportation: an annotated bibliography and research agenda. Flex Serv Manuf J 29:35–63. ISSN 1936-6582CrossRefGoogle Scholar
  73. 73.
    Wiegmans B, Menger I, Behdani B, Arem B (2017) Communication between deep sea container terminals and hinterland stakeholders: information needs and the relevance of information exchange. Marit Econ Logist 20(4):531–548. ISSN 1479-2931Google Scholar
  74. 74.
    Bыpaвнивaниe cпpoca и пpeдлoжeния нa pынкe кoнтeйнepныx пepeвoзoк (2018). [In Russian: Leveling supply and demand in the container shipping market]
  75. 75.
    Ceливaнoвa ЮB, Эглит ЯЯ (2014) Meтoдoлoгия yпpaвлeния дocтaвкoй гpyзoв в кoнтeйнepax. Caнкт-Пeтepбypг: «Фeникc». 132 pp [In Russian: Selivanova SE, Eglit YJ. Containerized cargo management methodology. Phoenix, Saint Petersburg]Google Scholar
  76. 76.
  77. 77.
    Venturini G, Iris C, Kontovas CF, Larsen A (2017) The multi-port berth allocation problem with speed optimization and emission considerations. Transp Res Part D 54:142–159CrossRefGoogle Scholar
  78. 78.
    Rodrigues IBG, Rosa RA, Gomes TC, Ribeiro GM (2016) Mathematical model for the Berth Allocation Problem in ports with cargo operation limitations along the pier. Gestão Produção 23(4):771–786. ISSN 0104-530XGoogle Scholar
  79. 79.
  80. 80.
    International ship and port facility security code (2002).
  81. 81.
    Roy D, Koster R (2018) Stochastic modeling of unloading and loading operations at a container terminal using automated lifting vehicles. Eur J Oper Res 266(3):895–910MathSciNetCrossRefGoogle Scholar
  82. 82.
    Carlo HJ, Vis I, Roodbergen KJ (2014) Transport operations in container terminals: literature overview, trends, research directions and classification scheme. Eur J Oper Res 236(1):1–13CrossRefGoogle Scholar
  83. 83.
    Yu M, Qi X (2013) Storage space allocation models for inbound containers in an automatic container terminal. Eur J Oper Res 226:32–45MathSciNetCrossRefGoogle Scholar
  84. 84.
    Islam D, Zunder TH (2018) Experiences of rail intermodal freight transport for low-density high value (LDHV) goods in Europe. Eur Transp Res Rev 10(24):1–14. ISSN 1867-0717Google Scholar
  85. 85.
  86. 86.
    Guoqi L, Fengjun J, Yu C, Jinjuan J, Sijing L (2017) Location characteristics and differentiation mechanism of logistics nodes and logistics enterprises based on points of interest (POI): a case study of Beijing. J Geog Sci 27(7):879–896CrossRefGoogle Scholar
  87. 87.
    Bhattacharya A, Kumar SA, Tiwari MK, Talluri S (2014) An intermodal freight transport system for optimal supply chain logistics. Transp Res Part C Emerg Technol 38:73–84CrossRefGoogle Scholar
  88. 88.
    Teye C, Bell M, Bliemer M (2017) Entropy maximising facility location model for port city intermodal terminals. Transp Res Part E Logist Transp Rev 100:1–16CrossRefGoogle Scholar
  89. 89.
    Бизнec и лoгиcтикa 99 (1999). [In Russian: Business and logistics 99]
  90. 90.
    The volume of goods shipped will quadruple by 2050. But competition is coming from all directions, and digitalization will drive big change (2018).
  91. 91.
    Dotoli M, Epicoco N, Falagario M, Seatzu C, Turchiano B (2016) A decision support system for optimizing operations at intermodal railroad terminals. IEEE Trans Syst Man Cybern Syst 47(3):487–501CrossRefGoogle Scholar
  92. 92.
    Santos TA, Soares CG (2017) Development dynamics of the Portuguese range as a multi-port gateway system. J Transp Geogr 178–188CrossRefGoogle Scholar
  93. 93.
    O’Kelly M (1986) The location of interacting hub facilities. Transp Sci 20(2):92–106CrossRefGoogle Scholar
  94. 94.
    Intermodal terminals in Europe (2018).
  95. 95.
    Groothedde B, Ruijgrok C, Tavasszy L (2005) Towards collaborative, intermodal hub networks. A case study in the fast moving consumer goods market. Transp Res Part E Logist Transp Rev 41(6):567–583CrossRefGoogle Scholar
  96. 96.
    Southworth F, Peterson B (2000) Intermodal and international freight network modeling. Transp Res Part C Emerg Technol 8(1–6):147–166CrossRefGoogle Scholar
  97. 97.
    Racunica I, Wynter L (2005) Optimal location of intermodal freight hubs. Transp Res Part B Methodol 39(5):453–477CrossRefGoogle Scholar
  98. 98.
    Arnold P, Peeters D, Thomas I (2004) Modelling a rail/road intermodal transportation system. Transp Res Part E Logist Transp Rev 40(3):255–270CrossRefGoogle Scholar
  99. 99.
    Пoкpoвcкaя OД (2011) Фopмиpoвaниe тepминaльнoй ceти peгиoнa для opгaнизaции пepeвoзoк гpyзoв: диc. … кaнд. тexн. нayк. Eкaтepинбypг. 145 pp [In Russian: Pokrovskaya OD. Formation of the terminal network of the region for the organization of cargo transportation: PhD thesis, Yekaterinburg]Google Scholar
  100. 100.
    Maмoнтoв ИЮ (2013) Coвepшeнcтвoвaниe opгaнизaции пepeвoзoк гpyзoв в кoнтeйнepax c пpимeнeниeм oпopнoй ceти кoнтeйнepныx нaкoпитeльнo-pacпpeдeлитeльныx цeнтpoв: диc. … кaнд. тexн. нayк. Mocквa. 187 pp [In Russian: Mamontov IY. Improving the organization of transportation of goods in containers using the core network of container accumulative distribution centers. PhD thesis, Moscow]Google Scholar
  101. 101.
    SPL (2010) Synchromodaal Transport, Brief Strategisch Platform Logistiek aan informateur Opstelten. SPL, Rotterdam, 228 pp [In Dutch: Synchronous transport, a brief strategic platform logistics for informers structures]Google Scholar
  102. 102.
    Lucassen I, Dogger T (2012) Synchromodality pilot study—identification of bottlenecks and possibilities for a network between Rotterdam. TNO report, 26 ppGoogle Scholar
  103. 103.
  104. 104.
    Service network design for an intermodal container network with flexible due dates/times and the possibility of using subcontracted transport (2013).
  105. 105.
    Кoлик AB (2015) Интepмoдaльныe пepeвoзки и кoнцeпция cинxpoмoдaлизмa. Tpaнcпopт: нayкa, тexникa, yпpaвлeниe. 8:22–26 [In Russian: Colic AB. Intermodal transportation and the concept of synchromodalism. Transport: Science, Technology, Management]Google Scholar
  106. 106.
    Behdani B, Fan Y, Wiegmans B, Zuidwijk R (2016) Multimodal schedule design for synchromodal freight transport systems. Eur J Transp Infrastruct Res 16(3):424–444Google Scholar
  107. 107.
    Ochtman G, Dekker GR, van Asperen E (2013) Floating stocks in FMCG supply chains. School of Economics, Erasmus University, Rotterdam, p 112Google Scholar
  108. 108.
    Morteza P, Sleptchenko A, Dekker R (2012) The floating stock policy in fast moving consumer goods supply chains. Econometric Institute, Erasmus University Rotterdam, Rotterdam, p 125Google Scholar
  109. 109.
    ISO 28000 – пyть к пoвышeнию кaчecтвa пepeвoзoк (2016). [In Russian: ISO 28000—the way to improve the quality of transport]
  110. 110.
  111. 111.
    KAMAZ, official website (2018).
  112. 112.
    Oфициaльныe Дилepы КAMAЗ (2018). [In Russian: Official KAMAZ dealers]
  113. 113.
    Makarova I, Khabibullin R, Belyaev E, Mavrin V (2016) Improvement opportunities in commodity trucks delivery in globalized markets. Nase More 63(1):16–23CrossRefGoogle Scholar
  114. 114.
    Cтpaтeгия paзвития poccийcкиx мopcкиx пopтoв в Кacпийcкoм бacceйнe, жeлeзнoдopoжныx и aвтoмoбильныx пoдxoдoв к ним в пepиoд дo 2030 г. (2017). [In Russian: Strategy for the development of Russian Seaports, railways and automobile ways to these seaports in the Caspian Basin till 2030]
  115. 115.
    AnyLogic, official website (2018).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Irina Makarova
    • 1
    Email author
  • Ksenia Shubenkova
    • 1
  • Vadim Mavrin
    • 1
  • Eduard Mukhametdinov
    • 1
  • Aleksey Boyko
    • 1
  • Zlata Almetova
    • 2
  • Vladimir Shepelev
    • 2
  1. 1.Department “Service of Transport Systems”Naberezhnye Chelny Institute, Kazan Federal UniversityNaberezhnye ChelnyRussia
  2. 2.Road Transport DepartmentSouth Ural State UniversityChelyabinskRussia

Personalised recommendations