Maintaining the Visibility Graph of a Dynamic Simple Polygon

  • Tameem Choudhury
  • R. InkuluEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11394)


We devise a fully-dynamic algorithm for maintaining the visibility graph of a given simple polygon P amid vertex insertions and deletions to the simple polygon. Our algorithm takes \(O(k(\lg {n'})^2)\) worst-case time to update the visibility graph when a vertex is inserted to the current simple polygon \(P'\), or when a vertex is deleted from \(P'\). Here, k is the number of combinatorial changes needed to the visibility graph due to the insertion (resp. deletion) of a vertex v to \(P'\), and \(n'\) is the number of vertices of \(P'\). This algorithm preprocesses the initial simple polygon P to build few data structures, including the visibility graph of P. Further, as part of efficiently updating the visibility graph, a fully-dynamic algorithm is designed to compute the vertices of the current simple polygon that are visible from a query point.


Computational geometry Visibility Dynamic algorithms 


  1. 1.
    Aronov, B., Guibas, L.J., Teichmann, M., Zhang, L.: Visibility queries and maintenance in simple polygons. Discret. Comput. Geom. 27(4), 461–483 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Asano, T., Asano, T., Guibas, L.J., Hershberger, J., Imai, H.: Visibility of disjoint polygons. Algorithmica 1(1), 49–63 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Comput. Geom. Appl. 4(4), 475–481 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons. Comput. Geom. 23(3), 313–335 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chazelle, B.: Triangulating a simple polygon in linear time. Discret. Comput. Geom. 6, 485–524 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chen, D.Z., Wang, H.: Visibility and ray shooting queries in polygonal domains. Comput. Geom. 48(2), 31–41 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chen, D.Z., Wang, H.: Weak visibility queries of line segments in simple polygons. Comput. Geom. 48(6), 443–452 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Davis, L.S., Benedikt, M.L.: Computational models of space: Isovists and Isovist fields. Comput. Graph. Image Process. 11(1), 49–72 (1979)CrossRefGoogle Scholar
  9. 9.
    ElGindy, H.A., Avis, D.: A linear algorithm for computing the visibility polygon from a point. J. Algorithms 2(2), 186–197 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ghosh, S.K.: Computing the visibility polygon from a convex set and related problems. J. Algorithms 12(1), 75–95 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, New York (2007)zbMATHCrossRefGoogle Scholar
  12. 12.
    Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility graphs. SIAM J. Comput. 20(5), 888–910 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Goodrich, M.T., Tamassia, R.: Dynamic ray shooting and shortest paths in planar subdivisions via balanced geodesic triangulations. J. Algorithms 23(1), 51–73 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci. 39(2), 126–152 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Guibas, L.J., Motwani, R., Raghavan, P.: The robot localization problem. SIAM J. Comput. 26(4), 1120–1138 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hershberger. J.: Finding the visibility graph of a simple polygon in time proportional to its size. In: Proceedings of the Third Annual Symposium on Computational Geometry, pp. 11–20 (1987)Google Scholar
  17. 17.
    Hershberger, J.: An optimal visibility graph algorithm for triangulated simple polygons. Algorithmica 4, 141–155 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Inkulu, R., Kapoor, S.: Visibility queries in a polygonal region. Comput. Geom. 42(9), 852–864 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Inkulu, R., Thakur, N.: Incremental algorithms to update visibility polygons. In: Proceedings of Conference on Algorithms and Discrete Applied Mathematics, pp. 205–218 (2017)zbMATHCrossRefGoogle Scholar
  20. 20.
    Inkulu, R., Sowmya, K.: Dynamic algorithms for visibility polygons. CoRR, abs/1704.08219 (2017)Google Scholar
  21. 21.
    Joe, B., Simpson, R.: Corrections to Lee’s visibility polygon algorithm. BIT Numer. Math. 27(4), 458–473 (1987)zbMATHCrossRefGoogle Scholar
  22. 22.
    Kapoor, S., Maheshwari, S.N.: Efficient algorithms for Euclidean shortest path and visibility problems with polygonal obstacles. In: Proceedings of Symposium on Computational Geometry, pp. 172–182 (1988)Google Scholar
  23. 23.
    Kapoor, S., Maheshwari, S.N.: Efficiently constructing the visibility graph of a simple polygon with obstacles. SIAM J. Comput. 30(3), 847–871 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Lee, D.T.: Proximity and reachability in the plane. Ph.D. thesis, University of Illinois at Urbana-Champaign (1978). Ph.D. thesis and Technical report ACT-12Google Scholar
  25. 25.
    Lee, D.T.: Visibility of a simple polygon. Comput. Vis. Graph. Image Process. 22(2), 207–221 (1983)zbMATHCrossRefGoogle Scholar
  26. 26.
    Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: Proceedings of the Fourth Annual Symposium on Computational Geometry, pp. 164–171 (1988)Google Scholar
  27. 27.
    Pocchiola, M., Vegter, G.: Topologically sweeping visibility complexes via pseudotriangulations. Discret. Comput. Geom. 16(4), 419–453 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15(1), 193–215 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Vegter, G.: The visibility diagram: a data structure for visibility problems and motion planning. In: Proceedings of Scandinavian Workshop on Algorithm Theory, pp. 97–110 (1990)CrossRefGoogle Scholar
  30. 30.
    Welzl, E.: Constructing the visibility graph for \(n\)-line segments in \(O(n^2)\) time. Inf. Process. Lett. 20(4), 167–171 (1985)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Zarei, A., Ghodsi, M.: Efficient computation of query point visibility in polygons with holes. In: Proceedings of the Symposium on Computational Geometry, pp. 314–320 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIIT GuwahatiGuwahatiIndia

Personalised recommendations