Advertisement

Reference-Ellipsoid and Normal Gravity Field in Post-Newtonian Geodesy

  • Sergei KopeikinEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 196)

Abstract

Modern geodesy is undergoing a crucial transformation from the Newtonian paradigm to the Einstein theory of general relativity. This is motivated by advances in developing quantum geodetic sensors including gravimeters and gradientometers, atomic clocks and fiber optics for making ultra-precise measurements of geoid and multipolar structure of Earth’s gravitational field. At the same time, Very Long Baseline Interferometry, Satellite Laser Ranging and Global Navigation Satellite System have achieved an unprecedented level of accuracy in measuring spatial coordinates of reference points of the International Terrestrial Reference Frame and the world height system. The main geodetic reference standard to which gravimetric measurements of Earth’s gravitational field are referred, is called normal gravity field which is represented in the Newtonian gravity by the field of a uniformly rotating, homogeneous Maclaurin ellipsoid having mass and quadrupole momentum equal to the total mass and (tide-free) quadrupole moment of the gravitational field of Earth. The present chapter extends the concept of the normal gravity field from the Newtonian theory to the realm of general relativity. We focus on the calculation of the post-Newtonian approximation of the normal field that would be sufficiently precise for near-future practical applications. We show that in general relativity the level surface of homogeneous and uniformly rotating fluid is no longer described by the Maclaurin ellipsoid in the most general case but represents an axisymmetric spheroid of the fourth order (PN spheroid) with respect to the geodetic Cartesian coordinates. At the same time, admitting post-Newtonian inhomogeneity of mass density in the form of concentric elliptical shells allows us to preserve the level surface of the fluid as an exact ellipsoid of rotation. We parametrize the mass density distribution and the level equipotential surface with two parameters which are intrinsically connected to the existence of the residual gauge freedom, and derive the post-Newtonian normal gravity field of the rotating spheroid both inside and outside of the rotating fluid body. The normal gravity field is given, similarly to the Newtonian gravity, in a closed form by a finite number of the ellipsoidal harmonics. We employ transformation from the ellipsoidal to spherical coordinates to deduce a more conventional post-Newtonian multipolar expansion of scalar and vector gravitational potentials of the rotating spheroid. We compare these expansions with that of the normal gravity field generated by the Kerr metric and demonstrate that the Kerr metric has a fairly limited application in relativistic geodesy as it does not match the normal gravity field of the Maclaurin ellipsoid already in the Newtonian limit. We derive the post-Newtonian generalization of the Somigliana formula for the normal gravity field measured on the surface of the rotating PN spheroid and employed in practical work for measuring the Earth gravitational field anomalies. Finally, we discuss the possible choice of the gauge-dependent parameters of the normal gravity field model for practical applications and compare it with the existing EGM2008 model of gravitational field.

Notes

Acknowledgements

I thank Physikzentrum Bad Honnef for hospitality and Wilhelm and Else Heraeus Stiftung for providing generous travel support to deliver a talk at 609 WE-Heraeus-Seminar “Relativistic Geodesy: Foundations and Applications” (13.03. - 19.03.2016). This work contributes to the research project “Spacetime Metrology, Clocks and Relativistic Geodesy” [http://www.issibern.ch/teams/spacetimemetrology/] sponsored by the International Space Science Institute (ISSI) in Bern, Switzerland.

References

  1. 1.
    S.M. Kopejkin, Relativistic manifestations of gravitational fields in gravimetry and geodesy. Manuscr. Geod. 16, 301–312 (1991)ADSGoogle Scholar
  2. 2.
    S.M. Kopeikin, E.M. Mazurova, A.P. Karpik, Towards an exact relativistic theory of Earth’s geoid undulation. Phys. Lett. A 379, 1555–1562 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    S.M. Kopeikin, Reference ellipsoid and geoid in chronometric geodesy. Front. Astron. Space Sci. 3(5), 5 (2016)ADSGoogle Scholar
  4. 4.
    S. Kopeikin, W. Han, E. Mazurova, Post-Newtonian reference ellipsoid for relativistic geodesy. Phys. Rev. D 93(4), 044069 (2016)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Kopeikin, M. Efroimsky, G. Kaplan, Relativistic Celestial Mechanics of the Solar System (Wiley, Berlin, 2011), xxxii+860 ppzbMATHCrossRefGoogle Scholar
  6. 6.
    P. Vaníček, E.J. Krakiwsky, Geodesy, the Concepts, 2nd edn. (Amsterdam, North Holland, 1986), xv+697 ppGoogle Scholar
  7. 7.
    B. Hofmann-Wellenhof, H. Moritz, Physical Geodesy (Springer, Berlin, 2006)Google Scholar
  8. 8.
    W. Torge, J. Müller, Geodesy, 4th edn. (De Gruyter, Berlin, 2012), 433 ppGoogle Scholar
  9. 9.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1975), xiii+402 ppCrossRefGoogle Scholar
  10. 10.
    W.A. Heiskanen, H. Moritz, Physical Geodesy (W. H. Freeman, San Francisco, 1967), 364 ppGoogle Scholar
  11. 11.
    G. Petit, B. Luzum, IERS conventions. IERS Tech. Note 36, 179 pp. (2010)Google Scholar
  12. 12.
    K. Sośnica, D. Thaller, A. Jäggi, R. Dach, G. Beutler, Sensitivity of Lageos orbits to global gravity field models. Artif. Satell. 47, 47–65 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    P.L. Bender, R.S. Nerem, J.M. Wahr, Possible future use of laser gravity gradiometers. Space Sci. Rev. 108, 385–392 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    N.K. Pavlis, S.A. Holmes, S.C. Kenyon, J.K. Factor, The development and evaluation of the Earth gravitational model 2008 (EGM2008). J. Geophys. Res. Solid Earth 117, B04406 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    N.K. Pavlis, S.A. Holmes, S.C. Kenyon, J.K. Factor, Correction to “the development and evaluation of the Earth gravitational model 2008 (EGM2008)”. J. Geophys. Res. Solid Earth 118, 2633–2633 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Fu Lee-Lueng, On the decadal trend of global mean sea level and its implication on ocean heat content change. Front. Mar. Sci. 3, 37 (2016)Google Scholar
  17. 17.
    H.-P. Plag, M. Pearlman (eds.), Global Geodetic Observing System (Springer, Dordrecht, 2009), 322 ppGoogle Scholar
  18. 18.
    L.-L. Fu, B.J. Haines, The challenges in long-term altimetry calibration for addressing the problem of global sea level change. Adv. Space Res. 51, 1284–1300 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Altamimi, P. Rebischung, L. Métivier, X. Collilieux, ITRF2014: a new release of the international Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 121, 6109–6131 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    J. Müller, D. Dirkx, S.M. Kopeikin, G. Lion, I. Panet, G. Petit, P.N.A.M. Visser, High performance clocks and gravity field determination. Space Sci. Rev. 214(5), 1–31 (2018)ADSGoogle Scholar
  21. 21.
    R. Bondarescu, M. Bondarescu, G. Hetényi, L. Boschi, P. Jetzer, J. Balakrishna, Geophysical applicability of atomic clocks: direct continental geoid mapping. Geophys. J. Int. 191, 78–82 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    E. Mai, J. Müller, General remarks on the potential use of atomic clocks in relativistic geodesy. ZFV - Zeitschrift fur Geodasie, Geoinformation und Landmanagement 138(4), 257–266 (2013)Google Scholar
  23. 23.
    E. Mai, Time, atomic clocks, and relativistic geodesy. Report No 124, Deutsche Geodátische Kommission der Bayerischen Akademie der Wissenschaften (DGK) (2014), 128 pp., http://dgk.badw.de/fileadmin/docs/a-124.pdf
  24. 24.
    E. Hackmann, C. Lämmerzahl, Generalized gravitomagnetic clock effect. Phys. Rev. D 90(4), 044059 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    J.M. Cohen, B. Mashhoon, Standard clocks, interferometry, and gravitomagnetism. Phys. Lett. A 181, 353–358 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    V.F. Fateev, S.M. Kopeikin, S.L. Pasynok, Effect of irregularities in the earth’s rotation on relativistic shifts in frequency and time of earthbound atomic clocks. Meas. Tech. 58, 647–654 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Soffel, S.A. Klioner, G. Petit, P. Wolf, S.M. Kopeikin, P. Bretagnon, V.A. Brumberg, N. Capitaine, T. Damour, T. Fukushima, B. Guinot, T.-Y. Huang, L. Lindegren, C. Ma, K. Nordtvedt, J.C. Ries, P.K. Seidelmann, D. Vokrouhlický, C.M. Will, C. Xu, The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron. J. (USA) 126, 2687–2706 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    M. Soffel, S. Kopeikin, W.-B. Han, Advanced relativistic VLBI model for geodesy. J. Geod. 91(7), 783–801 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    V.A. Brumberg, S.M. Kopeikin, Relativistic equations of motion of the earth’s satellite in the geocentric frame of reference. Kinematika i Fizika Nebesnykh Tel 5, 3–8 (1989)ADSMathSciNetGoogle Scholar
  30. 30.
    V.A. Brumberg, S.M. Kopejkin, Relativistic reference systems and motion of test bodies in the vicinity of the Earth. Nuovo Cim. B Ser. 103, 63–98 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    T. Damour, M. Soffel, C. Xu, General-relativistic celestial mechanics. IV. Theory of satellite motion. Phys. Rev. D 49, 618–635 (1994)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A. San Miguel, Numerical integration of relativistic equations of motion for Earth satellites. Celest. Mech. Dyn. Astron. 103, 17–30 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    U. Kostić, M. Horvat, A. Gomboc, Relativistic positioning system in perturbed spacetime. Class. Quantum Gravity 32(21), 215004 (2015)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    K.-M. Roh, B.-K. Choi, The effects of the IERS conventions (2010) on high precision orbit propagation. J. Astron. Space Sci. 31, 41–50 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    K.-M. Roh, S.M. Kopeikin, J.-H. Cho, Numerical simulation of the post-Newtonian equations of motion for the near Earth satellite with an application to the LARES satellite. Adv. Space Res. 58, 2255–2268 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    I. Ciufolini, E.C. Pavlis, A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958–960 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    I. Ciufolini, Dragging of inertial frames. Nature 449, 41–47 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    I. Ciufolini, E.C. Pavlis, A. Paolozzi, J. Ries, R. Koenig, R. Matzner, G. Sindoni, K.H. Neumayer, Phenomenology of the lense-thirring effect in the solar system: measurement of frame-dragging with laser ranged satellites. New Astron. 17, 341–346 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    V.G. Gurzadyan, I. Ciufolini, A. Paolozzi, A.L. Kashin, H.G. Khachatryan, S. Mirzoyan, G. Sindoni, Satellites testing general relativity: residuals versus perturbations. Int. J. Mod. Phys. D 26, 1741020 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    K.S. Thorne, R.D. Blandford, Black holes and the origin of radio sources, in Extragalactic Radio Sources. IAU Symposium, vol. 97, ed. by D.S. Heeschen, C.M. Wade (1982), pp. 255–262Google Scholar
  41. 41.
    S. Chandrasekhar, Ellipsoidal Figures of Equilibrium (Yale University Press, New Haven, 1969), ix+252 ppGoogle Scholar
  42. 42.
    A.N. Petrov, S.M. Kopeikin, R.R. Lompay, B. Tekin, Metric Theories of Gravity: Perturbations and Conservation Laws (De Gruyter, Berlin, 2017), xxiv+597 ppGoogle Scholar
  43. 43.
    L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014)ADSzbMATHCrossRefGoogle Scholar
  44. 44.
    M. Soffel, F. Frutos, On the usefulness of relativistic space-times for the description of the Earth’s gravitational field. J. Geod. 90(12), 1345–1357 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    D. Philipp, V. Perlick, D. Puetzfeld, E. Hackmann, C. Lämmerzahl, Definition of the relativistic geoid in terms of isochronometric surfaces. Phys. Rev. D 95(10), 104037 (2017)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    M. Oltean, R.J. Epp, P.L. McGrath, R.B. Mann, Geoids in general relativity: geoid quasilocal frames. Class. Quantum Gravity 33(10), 105001 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    K.D. Krori, P. Borgohain, Uniform-density cold neutron stars in general relativity. J. Phys. Math. Gen. 8, 512–520 (1975)ADSCrossRefGoogle Scholar
  48. 48.
    J. Ponce de León, Fluid spheres of uniform density in general relativity. J. Math. Phys. 27, 271–276 (1986)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    L. Lindblom, Static uniform-density stars must be spherical in general relativity. J. Math. Phys. 29, 436–439 (1988)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    J.N. Islam, Rotating Fields in General Relativity (Cambridge University Press, Cambridge, 1985), 127 ppGoogle Scholar
  51. 51.
    E. Gourgoulhon, An introduction to the theory of rotating relativistic stars. Lectures Given at the Compstar 2010 School (Caen, 8–16 Feb 2010) (2010)Google Scholar
  52. 52.
    J.L. Friedman, N. Stergioulas, Rotating Relativistic Stars (Cambridge University Press, Cambridge, 2013), 438 ppGoogle Scholar
  53. 53.
    S. Chandrasekhar, The post-Newtonian effects of general relativity on the equilibrium of uniformly rotating bodies. I. The Maclaurin spheroids and the virial theorem. Astrophys. J. 142, 1513–1518 (1965)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    S. Chandrasekhar, The post-Newtonian effects of general relativity on the equilibrium of uniformly rotating bodies. II. The deformed figures of the Maclaurin spheroids. Astrophys. J. 147, 334–352 (1967)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    N.P. Bondarenko, K.A. Pyragas, On the equilibrium figures of an ideal rotating liquid in the post-Newtonian approximation of general relativity. II: Maclaurin’s P-ellipsoid. Astrophys. Space Sci. 27, 453–466 (1974)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    D. Petroff, Post-Newtonian Maclaurin spheroids to arbitrary order. Phys. Rev. D 68(10), 104029 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    G.L. Clark, The gravitational field of a rotating nearly spherical body. Philos. Mag. 39(297), 747–778 (1948)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    P. Teyssandier, Rotating stratified ellipsoids of revolution and their effects on the dragging of inertial frames. Phys. Rev. D 18, 1037–1046 (1978)ADSCrossRefGoogle Scholar
  59. 59.
    H. Cheng, G.-X. Song, C. Huang, The internal and external metrics of a rotating ellipsoid under post-Newtonianian approximation. Chin. Astron. Astrophys. 31, 192–204 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, UK, 1993), xi+396 ppGoogle Scholar
  61. 61.
    S. Kopeikin, I. Vlasov, Parametrized post-Newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem. Phys. Rep. 400, 209–318 (2004)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    M.H. Soffel, Relativity in Astrometry, Celestial Mechanics and Geodesy (Springer, Berlin, 1989), xiv+208 ppCrossRefGoogle Scholar
  63. 63.
    V.A. Brumberg, Essential Relativistic Celestial Mechanics (Adam Hilger, Bristol, 1991), x+263 ppGoogle Scholar
  64. 64.
    A.D. Rendall, Convergent and divergent perturbation series and the post-Minkowskian approximation scheme. Class. Quantum Gravity 7(5), 803–812 (1990)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    J. Müller, M. Soffel, S.A. Klioner, Geodesy and relativity. J. Geod. 82, 133–145 (2008)ADSzbMATHCrossRefGoogle Scholar
  66. 66.
    V.A. Fock, The Theory of Space, Time and Gravitation, 2nd edn. (Macmillan, New York, 1964); Translated from the Russian by N. Kemmer, xii+448 ppGoogle Scholar
  67. 67.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)Google Scholar
  68. 68.
    A.P. Lightman, W.H. Press, R.H. Price, S.A. Teukolsky, Problem Book in Relativity and Gravitation (Princeton University Press, Princeton, 1975), xiv+603 ppGoogle Scholar
  69. 69.
    G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists, 4th edn. (Academic Press, San Diego, 1995), xviii+1029 ppCrossRefGoogle Scholar
  70. 70.
    E.W. Hobson, The Theory of Spherical and Elliptical Harmonics (Cambridge University Press, Cambridge, 1931), vi+500 ppGoogle Scholar
  71. 71.
    V. Pohánka, Gravitational field of the homogeneous rotational ellipsoidal body: a simple derivation and applications. Contrib. Geophys. Geod. 41, 117–157 (2011)ADSCrossRefGoogle Scholar
  72. 72.
    I.S. Gradshteyn, I.M. Ryzhik, in Table of Integrals, Series and Products, 4th edn., ed. by Y.V. Geronimus, M.Y. Tseytlin (Academic Press, New York, 1965); First appeared in 1942 as MT15 in the Mathematical tables series of the National Bureau of StandardsGoogle Scholar
  73. 73.
    I. Ciufolini, J.A. Wheeler, Gravitation and Inertia (Princeton University Press, Princeton, 1995), 512 ppGoogle Scholar
  74. 74.
    S.M. Kopeikin, Gravitomagnetism and the speed of gravity. Int. J. Mod. Phys. D 15, 305–320 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    S.M. Kopeikin, The gravitomagnetic influence on Earth-orbiting spacecrafts and on the lunar orbit, in General Relativity and John Archibald Wheeler, vol. 367, Astrophysics and Space Science Library, ed. by I. Ciufolini, R.A.A. Matzner (Springer, Berlin, 2010)CrossRefGoogle Scholar
  76. 76.
    B.H. Hager, M.A. Richards, Long-wavelength variations in Earth’s geoid - physical models and dynamical implications. Philos. Trans. R. Soc. Lond. Ser. A 328, 309–327 (1989)ADSCrossRefGoogle Scholar
  77. 77.
    J.-L. Tassoul, Theory of Rotating Stars (Princeton University Press, Princeton, 1979), xvi+508 ppGoogle Scholar
  78. 78.
    P. Pizzetti, Principii della teoria meccanica della figura dei pianeti (E. Spoerri, Pisa, 1913), xiii+251 ppGoogle Scholar
  79. 79.
    R.O. Hansen, Multipole moments of stationary space-times. J. Math. Phys. 15, 46–52 (1974)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    K.S. Thorne, Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299–339 (1980)ADSMathSciNetCrossRefGoogle Scholar
  81. 81.
    L. Blanchet, T. Damour, Radiative gravitational fields in general relativity. I - general structure of the field outside the source. Philos. Trans. R. Soc. Lond. Ser. A 320, 379–430 (1986)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    H. Quevedo, Multipole moments in general relativity - static and stationary vacuum solutions. Fortschritte der Physik 38, 733–840 (1990)ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    T. Damour, B.R. Iyer, Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors. Phys. Rev. D 43, 3259–3272 (1991)ADSMathSciNetCrossRefGoogle Scholar
  84. 84.
    L. Blanchet, On the multipole expansion of the gravitational field. Class. Quantum Gravity 15, 1971–1999 (1998)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    C. Jekeli, The exact transformation between ellipsoidal and spherical harmonic expansions. Manuscr. Geod. 13, 106–113 (1988)Google Scholar
  86. 86.
    C. Snow, Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory, 2nd edn. (US Government Printing Office, Washington, 1952), xi+427 ppGoogle Scholar
  87. 87.
    M. Soffel, R. Langhans, Space-Time Reference Systems (Springer, Berlin, 2013), xiv+314 ppzbMATHCrossRefGoogle Scholar
  88. 88.
    S. Chandrasekhar, J.C. Miller, On slowly rotating homogeneous masses in general relativity. Mon. Not. Roy. Astron. Soc. 167, 63–80 (1974)ADSCrossRefGoogle Scholar
  89. 89.
    J.M. Bardeen, A reexamination of the post-Newtonian Maclaurin spheroids. Astrophys. J. 167, 425 (1971)ADSMathSciNetCrossRefGoogle Scholar
  90. 90.
    R. Meinel, M. Ansorg, A. Kleinwächter, G. Neugebauer, D. Petroff, Relativistic Figures of Equilibrium (Cambridge University Press, Cambridge, 2008), p. ix+218 ppzbMATHCrossRefGoogle Scholar
  91. 91.
    H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein’s Field Equations, 2nd edn. (Cambridge University Press, Cambridge, 2003), xxix+701 ppGoogle Scholar
  92. 92.
    W.C. Hernandez, Material sources for the Kerr metric. Phys. Rev. 159, 1070–1072 (1967)ADSCrossRefGoogle Scholar
  93. 93.
    J.L. Hernandez-Pastora, L. Herrera, Interior solution for the Kerr metric. Phys. Rev. D 95(2), 024003 (2017)ADSMathSciNetCrossRefGoogle Scholar
  94. 94.
    C. Jiang, W. Lin, Harmonic metric for Kerr black hole and its post-Newtonian approximation. Gen. Relativ. Gravit. 46, 1671 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    W. Lin, C. Jiang, Exact and unique metric for Kerr-Newman black hole in harmonic coordinates. Phys. Rev. D 89(8), 087502 (2014)ADSCrossRefGoogle Scholar
  96. 96.
    H. Essén, The physics of rotational flattening and the point core model. Int. J. Geosci. 5, 555–570 (2014)CrossRefGoogle Scholar
  97. 97.
    A. Krasinski, Ellipsoidal space-times, sources for the Kerr metric. Ann. Phys. 112, 22–40 (1978)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    T. Wolf, G. Neugebauer, About the non-existence of perfect fluid bodies with the Kerr metric outside. Class. Quantum Gravity 9, L37–L42 (1992)ADSzbMATHCrossRefGoogle Scholar
  99. 99.
    C. Bambi, Black Holes: A Laboratory for Testing Strong Gravity (Springer, Singapore, 2017), xv+340 ppzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA

Personalised recommendations