Advertisement

On the Applicability of the Geodesic Deviation Equation in General Relativity

  • Dennis PhilippEmail author
  • Dirk Puetzfeld
  • Claus Lämmerzahl
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 196)

Abstract

Within the theory of General Relativity, we study the solution and range of applicability of the standard geodesic deviation equation in highly symmetric spacetimes. In the Schwarzschild spacetime, the solution is used to model satellite orbit constellations and their deviations around a spherically symmetric Earth model. We investigate the spatial shape and orbital elements of perturbations of circular reference curves. In particular, we reconsider the deviation equation in Newtonian gravity and then determine relativistic effects within the theory of General Relativity by comparison. The deviation of nearby satellite orbits, as constructed from exact solutions of the underlying geodesic equation, is compared to the solution of the geodesic deviation equation to assess the accuracy of the latter. Furthermore, we comment on the so-called Shirokov effect in the Schwarzschild spacetime and limitations of the first order deviation approach.

Notes

Acknowledgements

The present work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the grant PU 461/1-1 (D.P.), the Sonderforschungsbereich (SFB) 1128 Relativistic Geodesy and Gravimetry with Quantum Sensors (geo-Q), and the Research Training Group 1620 Models of Gravity. We also acknowledge support by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant number DLR 50WM1547.

The authors would like to thank V. Perlick, J.W. van Holten, and Y.N. Obukhov for valuable discussions.

References

  1. 1.
    F. Flechtner, K.-H. Neumayer, C. Dahle, H. Dobslaw, E. Fagiolini, J.-C. Raimondo, A. Guentner, What can be expected from the GRACE-FO laser ranging interferometer for earth science applications? Surv. Geophys. 37, 453 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    B.D. Loomis, R.S. Nerem, S.B. Luthcke, Simulation study of a follow-on gravity mission to GRACE. J. Geod. 86, 319 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M.F. Shirokov, On one new effect of the Einsteinian theory of gravitation. Gen. Relativ. Gravit. 4, 131 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    D. Philipp, V. Perlick, C. Lämmerzahl, K. Deshpande, On geodesic deviation in Schwarzschild spacetime, in IEEE Metrology for Aerospace (2015), p. 198Google Scholar
  5. 5.
    P.J. Greenberg, The equation of geodesic deviation in Newtonian theory and the oblateness of the earth. Nuovo Cimento 24B, 272 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    W.G. Dixon, The new mechanics of Myron Mathisson and its subsequent development, in Equations of Motion in Relativistic Gravity, ed. by D. Puetzfeld et al. Fundamental theories of Physics, vol. 179 (Springer, Berlin, 2015), p. 1Google Scholar
  7. 7.
    Y.N. Obukhov, D. Puetzfeld, Multipolar test body equations of motion in generalized gravity theories, in Equations of Motion in Relativistic Gravity, ed. by D. Puetzfeld et al. Fundamental theories of Physics, vol. 179 (Springer, Berlin, 2015), p. 67CrossRefGoogle Scholar
  8. 8.
    D. Puetzfeld, Y.N. Obukhov, Generalized deviation equation and determination of the curvature in general relativity. Phys. Rev. D 93, 044073 (2016)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    H. Fuchs, Conservation laws for test particles with internal structure. Annalen der Physik 34, 159 (1977)ADSCrossRefGoogle Scholar
  10. 10.
    H. Fuchs, Solutions of the equations of geodesic deviation for static spherical symmetric space-times. Annalen der Physik 40, 231 (1983)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Kerner, J.W. van Holten, R. Colistete Jr., Relativistic epicycles: another approach to geodesic deviations. Class. Quantum Gravity 18, 4725 (2001)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Koekoek, J.W. van Holten, Epicycles and Poincaré resonances in general relativity. Phys. Rev. D 83, 064041 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    H. Fuchs, Deviation of circular geodesics in static spherically symmetric space-times. Astron. Nachr. 311, 271 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    C. Misner, K. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)Google Scholar
  15. 15.
    A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik 354, 769 (1916)ADSCrossRefGoogle Scholar
  16. 16.
    A.R. Forsyth, Note on the central differential equation in the relativity theory of gravitation. Proc. R. Soc. Lond. A 97(682), 145 (1920)ADSCrossRefGoogle Scholar
  17. 17.
    W.B. Morton, LXI. The forms of planetary orbits on the theory of relativity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 42(250), 511 (1921)CrossRefGoogle Scholar
  18. 18.
    E. Hackmann, C. Lämmerzahl, Complete analytic solution of the geodesic equation in Schwarzschild (anti-)de Sitter spacetimes. Phys. Rev. Lett. 100, 171101 (2008)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    E. Hackmann, C. Lämmerzahl, Geodesic equation in Schwarzschild-(anti-)de Sitter space-times: analytical solutions and applications. Phys. Rev. D 78 (2008)Google Scholar
  20. 20.
    E. Hackmann, V. Kagramanova, J. Kunz, C. Lämmerzahl, Analytic solutions of the geodesic equation in axially symmetric space-times. Europhys. Lett. 88, 30008 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    A. Nduka, On Shirokov’s one new effect of the Einsteinian theory of gravitation. Gen. Relativ. Gravit. 8, 347 (1977)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Yu.S. Vladimirov, R.V. Rodichev, Small oscillations of test bodies in circular orbits in the Schwarzschild and Kerr metrics (Shirokov’s effect). Sov. Phys. J. 24, 954 (1981)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    W. Zimdahl, Shirokov effect and gravitationally induced supercurrents. Exp. Tech. Phys. 33, 403 (1985)Google Scholar
  24. 24.
    L. Bergamin, P. Delva, A. Hees, Vibrating systems in Schwarzschild spacetime: toward new experiments in gravitation? Class. Quantum Gravity 26, 18006 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    W. Zimdahl, G.M. Gilberto, Temperature oscillations of a gas in circular geodesic motion in the Schwarzschild field. Phys. Rev. D 91, 024003 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dennis Philipp
    • 1
    Email author
  • Dirk Puetzfeld
    • 1
  • Claus Lämmerzahl
    • 1
  1. 1.Center of Applied Space Technology and Microgravity (ZARM)University of BremenBremenGermany

Personalised recommendations