Advertisement

Time and Frequency Metrology in the Context of Relativistic Geodesy

  • Andreas BauchEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 196)

Abstract

A status report is given on current practice and trends in time and frequency metrology. Emphasis is laid on such fields of activity that are of interest in the context of relativistic geodesy. In consequence, several topics of a priori general relevance will not be dealt with. Clocks and the means of comparing their reading are equally important in practically all applications and thus dealt with in this contribution. The performance of commercial atomic clocks did not change significantly during the last 20 years. Progress is noted in the direction of miniaturization, leading to the wide-spread use of chip-scale atomic clocks. On the other hand, research institutes invested considerably into the perfection of their instrumentation. Cold-atom caesium fountain clocks realize the SI-second with a relative uncertainty of close to \(1\times 10^{-16}\), and with a relative frequency instability of the same magnitude after averaging over a few days only. Optical frequency standards are getting closer to being useful in practice: outstanding accuracy combined with improved technological readiness can be noted. So one necessary ingredient for relativistic geodesy has become available. Satellite-based time and frequency comparison is here still somewhat behind: Time transfer with ns-accuracy and frequency transfer with \(1\times 10^{-15}\) per day relative instability have become routine. Better performance requires new signal structures and processing schemes, some appear on the horizon.

Notes

Acknowledgements

This review paper reports mostly on achievements of colleagues from all over the world. The fruitful collaboration belonged to the pleasures of the author’s business life. Special thanks go to Ekkehard Peik, Dirk Piester and Stefan Weyers of PTB for critical reading of the manuscript.

References

  1. 1.
    A. Bjerhammar, On relativistic geodesy. Bull. Geod. 59, 207 (1985)CrossRefGoogle Scholar
  2. 2.
    H. Denker et al., Geodetic methods to determine the relativistic redshift at the level of \(10^{-18}\) in the context of international timescales - a review and practical results. J. Geod. 92, 487 (2018) to be publishedGoogle Scholar
  3. 3.
    Standard definitions of Physical Quantities for Fundamental Frequency and Time Metrology, IEEE-Std 1189–1988 (IEEE, 1988)Google Scholar
  4. 4.
    W.J. Riley, Handbook of Frequency Stability Analysis, NIST Special Publication, vol. 1065 (NIST, 2008)Google Scholar
  5. 5.
    Joint Committee for Guides in Metrology, Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement. JCGM 100:2008 (2008)Google Scholar
  6. 6.
    J. Vanier, C. Audoin, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, Bristol, 1989)Google Scholar
  7. 7.
    J. Vanier, C. Tomescu, The Quantum Physics of Atomic Frequency Standards - Recent Developments (CRC Press, Taylor & Francis Group, Boca Raton, 2016)CrossRefGoogle Scholar
  8. 8.
    C. Audoin, B. Guinot, The Measurement of Time (Cambridge University Press, Cambridge, 2001)Google Scholar
  9. 9.
    E.F. Arias, A. Bauch, Metrology of time and frequency, in Handbook of Metrology ed. by M. Gläser, M. Kochsiek (WILEY-VCH Verlag, Weinheim, 2010), p. 315Google Scholar
  10. 10.
    R. Lutwak et al., The MAC - a miniature atomic clock. Proceedings 2005 International Frequency Control Symposium and Exhibition (2005), p. 752Google Scholar
  11. 11.
    P. Forman, Atomichron®: the atomic clock from concept to commercial product. Proc. IEEE 73, 1181 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    L.S. Cutler, Fifty years of commercial caesium clocks. Metrologia 42, S90 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    A. Bauch, The PTB primary clocks CS1 and CS2. Metrologia 42, S43 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    N.F. Ramsey, Experiments with separated oscillatory fields and hydrogen masers (Nobel Lecture). Rev. Mod. Phys. 62, 541 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    R. Piriz et al., The time validation facility (TVF): an all-new key element of the Galileo operational phase. Proceedings of the Joint IEEE International Frequency Control Symposium and the European Frequency and Time Forum, Denver (2015), p. 320Google Scholar
  16. 16.
    H.J. Metcalf, P. van der Straten, Laser-Cooling and Trapping (Springer, New York, 1999)CrossRefGoogle Scholar
  17. 17.
    R. Wynands, S. Weyers, Atomic fountain clocks. Metrologia 42, S64 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    V. Gerginov et al., Uncertainty evaluation of the caesium fountain clock PTB-CSF2. Metrologia 47, 65 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    B. Lipphard, V. Gerginov, S. Weyers, Optical stabilization of a microwave oscillator for fountain clock interrogation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 99, 99 (2016)Google Scholar
  20. 20.
    G. Petit, G. Panfilo, Comparison of frequency standards used for TAI. IEEE Trans. Intrumentation Meas. 62, 1550 (2013)CrossRefGoogle Scholar
  21. 21.
    N.K. Pavlis, M.A. Weiss, The relativistic redshift with \(3\times 10^{-17}\) uncertainty at NIST, Boulder, Colorado, USA. Metrologia 40, 66 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    S. Peil et al., Evaluation of long term performance of continuously running atomic fountains. Metrologia 51, 263 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    BIPM, Le Système international d’unités (The International System of Units), 8th edition. BIPM, Pavillon de Breteuil, F-92312 Sèvres Cedex, France, 2006, 2014 update)Google Scholar
  24. 24.
    F. Riehle, Frequency Standards: Basics and Applications (Wiley VCH, Weinheim, 2006)Google Scholar
  25. 25.
    T.W. Hänsch, Passion for precision (Nobel lecture). Rev. Mod. Phys. 78, 1297 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    A.D. Ludlow et al., Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    H. Dehmelt, Coherent spectroscopy on single atomic system at rest in free space. J. Phys. (Paris) 42, C8–299 (1981)CrossRefGoogle Scholar
  28. 28.
    H. Katori, Spectroscopy of Strontium atoms in the Lamb-Dicke confinement, in Proceedings of the 6th Symposium on Frequency Standards and Metrology (2001). ((St. Andrews, Scotland), the proceedings were published by World Scientific, Singapore, in 2002, p. 323)Google Scholar
  29. 29.
    N. Huntemann et al., Single-ion atomic clock with \(3\times 10^{-18}\) systematic uncertainty. Phys. Rev. Lett. 116, 063001 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    S.B. Koller et al., Transportable optical lattice clock with \(7\times 10^{-17}\) uncertainty. Phys. Rev. Lett. 118, 073601 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    B. Guinot, E.F. Arias, Atomic time-keeping from 1955 to the present. Metrologia 42, S20 (2005)CrossRefGoogle Scholar
  32. 32.
  33. 33.
    P. Gill, F. Riehle, On secondary representations of the second, in Proceeding of the 20th European Frequency and Time Forum (2006), p. 282Google Scholar
  34. 34.
    G. Petit et al., UTCr: a rapid realization of UTC. Metrologia 51, 33 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    A. Bauch et al., Generation of UTC(PTB) as a fountain-clock based time scale. Metrologia 49, 180 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    C. Lisdat et al., A clock network for geodesy and fundamental science. Nat. Commun. 7, 12443 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Ł. Śliwczyński et al., Fiber-optic time transfer for UTC-traceable synchronization for telecom networks. IEEE Commun. Stand. Mag. 1, 66 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Levine, A review of time and frequency transfer methods. Metrologia 45, S162 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    ITU Study Group 7, ITU Handbook: Satellite Time and Frequency Transfer and Dissemination (International Telcommunication Union, Geneva, 2010)Google Scholar
  40. 40.
    E.D. Kaplan, C.J. Hegarty (eds.), Understanding GPS, Principles and Applications, 2nd edn. (Artech, Boston, London, 2006)Google Scholar
  41. 41.
    RINEX Working Group and RTCM-SC104, RINEX The Receiver Independent Exchange Format Version 3.02. International GNSS Service (2013), https://igscb.jpl.nasa.gov/igscb/data/format/rinex302.pdf
  42. 42.
    J. Kouba, P. Heroux, Precise point positioning using IGS orbit and clock products. GPS Solut. 5(2), 12 (2002)CrossRefGoogle Scholar
  43. 43.
    P. Defraigne, G. Petit, CGGTTS-Version 2E: an extended standard for GNSS time transfer. Metrologia 52, G1 (2015)CrossRefGoogle Scholar
  44. 44.
    G. Petit et al., \(10^{-16}\) frequency transfer by GPS PPP with integer ambiguity resolution. Metrologia 52, 301 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    D. Kirchner, Two-way satellite time transfer. Review of Radio Science 1996–1999 (1999), p. 27Google Scholar
  46. 46.
    A. Bauch, D. Piester, M. Fujieda, W. Lewandowski, Directive for operational use and data handling in two-way satellite time and frequency transfer (TWSTFT). BIPM, Rapport 2011/01, 2011 (2011)Google Scholar
  47. 47.
    A. Bauch et al., Comparison between frequency standards in Europe and the USA at the \(10^{-15}\) uncertainty level. Metrologia 43, 109 (2006)Google Scholar
  48. 48.
    L. Cacciapuoti, Chr. Salomon, Space clocks and fundamental tests: the ACES experiment. Eur. Phys. J. Spec. Top. 172, 57 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    L. Cacciapuoti, Chr. Salomon, Atomic clock ensemble in space. J. Phys. Conf. Ser. 327, 012049 (2011)Google Scholar
  50. 50.
    E. Peik, A. Bauch, More accurate clocks - What are they needed for? PTB-Mitteilungen 119(2), 16 (2009)Google Scholar
  51. 51.
    I.H. Stairs, Testing general relativity with pulsar timing. Living Rev. Relativ. (2003), http://relativity.livingreviews.org/open?pubNo=lrr-2003-5&=node5.html
  52. 52.
    G. Hobbs, Development of a pulsar-based time-scale. Mon. Not. R. Astron. Soc. 427, 2780 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    R.A. Hulse, The discovery of the binary pulsar (Nobel Lecture). Rev. Mod. Phys. 66, 699 (1994)ADSCrossRefGoogle Scholar
  54. 54.
    J.H. Taylor, Binary pulsars and relativistic gravity (Nobel Lecture). Rev. Mod. Phys. 66, 711 (1994)ADSCrossRefGoogle Scholar
  55. 55.
    N. Huntemann et al., Improved limit on a temporal variation of \(m_p/m_e\) from comparisons of \(Yb^{+}\) and Cs atomic clocks. Phys. Rev. Lett. 113, 210802 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    C. Lisdat, Private communication (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations