Theoretical–Methodological Principles of the Problem

  • Adalat Muradov
  • Yadulla Hasanli
  • Nazim Hajiyev
Part of the SpringerBriefs in Economics book series (BRIEFSECONOMICS)


The roles that hydrocarbon resources, including oil products as energy carriers, play in the economy and in the life of people are undeniable. Thus, a demand arises for oil and oil products as energy carriers. Oil has been extracted for many years, and it is already produced in more than 100 countries that contribute to the supply of oil and oil products. The changes in supply and demand for oil continuously maintain the volatility of the oil price, increasing the interest of producers and consumers in oil prices.


  1. Belkin VA (2017) Prognosis of the oil price on the bases of the average values by years. An eleven-year cycle of solar activity (1970-2016), Reviews of the Chelyabinsk State University in 2017 № 2. (398). Economic Science. Issue 56. P. 43-51. (Прогнозирование цен на нефть на основе их средних значений по годам одиннадцатилетнего цикла солнечной активности (1970—2016)-In Russian)Google Scholar
  2. Braginsky ОB (2008) Oil prices: history, forecast, impact on the economy. Russian Journal Chemical Chemistry, LII, No. 6. (Цены на нефть: история, прогноз, влияние на экономику-In Russian)Google Scholar
  3. Box, G.E.P., Jenkins, G.M. (1976) Time series analysis: forecasting and control. San Francisco: Holden-DayGoogle Scholar
  4. Charikov MV (n.d.) The influence of solar activity on people and the economy. Available at: (Влияние солнечной активности на людей и экономику-In Russian)
  5. Chertkov AD (1985) Solar, wind and internal structure of the Sun. Moscow: Nauka Publishing, 1985Google Scholar
  6. Chizhevsky A.L. (1924) Physical factors of the historical process. Kaluga.Google Scholar
  7. Chizhevsky AL (1995) Cosmic pulse of life: Earth in the embrace of the sun. Moscow, Russia (Космический пульс жизни: Земля в объятьях Солнца-In Russian)Google Scholar
  8. Dougerty C (1992) Introduction to Econometrics. New York Oxford, Oxford University Press.Google Scholar
  9. Dritsaki C (2018) The Performance of Hybrid ARIMA-GARCH Modeling and Forecasting Oil Price. International Journal of Energy Economics and Policy, 8(3), 14–21Google Scholar
  10. Dziuba D. (2008) World energy, No. 3, pp. 66Google Scholar
  11. Hank DE, Ucherin DU, Raytc AD (2003) Methods Box–Jenkins (ARIMA): business-forecasting. 7th edition. Williams Publishing. pp.453-544. (Метод Бокса-Дженкинса (ARIMA)// Бизнес-прогнозирование-In Russian)Google Scholar
  12. Hasanli Y and Ismayilov N (2012) Econometric modeling of solar intensity effect on demographic processes (Natural Growth, Birth, Death) in Azerbaijan”, Labor and Social Problems, Collection of Scientific Works, №3 (11), p.24-32) (Azərbaycanda Demoqrafik Proseslərə (Təbii Artim, Doğum, Ölüm) Günəş intensivliyinin təsirinin ekonometrik modelləşdirilməsi - In Azerbaijani)Google Scholar
  13. Hasanli Y, Ismailov N (2014) Economic assessment of solar activity on the oil prices. In: 18th international conference on “fundamental and applied research on development of high technology in economy, 4-5 December, 2014. Sankt Peterburg, Russia, pp. 29-34”. (эконометрическое оценивание влияния солнечной активности на мировые цены на нефть-In Russian)Google Scholar
  14. Hasanli Y and Abasov C (2014) Assessment of mutual economic relations of the countries of the world on the basis of input-output table. Journal, Economics World (ISSN 2328-7144) Vol.2, No.4, 2014, David Publishing, USA, pp.215-222.
  15. Hasanli Y, Hajiyev N, Ismailov N, Akperov R (2015) “The Solar Activity And Econometric Modeling Of Its Impact To Human Recourse And Economic”, Ecomod, Boston, USA.Google Scholar
  16. Interfax (2010) The sun is blamed: the financial crisis is caused by a small activity of the luminary”. (Обвиняется Солнце: финансовый кризис вызван малой активностью светила-In Russian).Google Scholar
  17. Kang SH, Yoon S (2013) Modeling and forecasting the volatility of petroleum futures prices// Energy Economics, №36. pp. 354-362Google Scholar
  18. Kantorovic QQ (2012) Analysis of time series. Journal of Economics. №1, pp. 85-116. (Анализ временных рядов-In Russian)Google Scholar
  19. Koehler AB, Snyder RD, Ord JK, Beaumont A (2012) A study of outliers in the exponential smoothing approach to forecasting//International Journal of Forecasting №28, p. 477-484Google Scholar
  20. Kravchenko E (2007) World energy. No. 4, pp. 54Google Scholar
  21. Maddison A (1964) Economic growth in the west. London, UK.Google Scholar
  22. Magnus YR, Katishev PK, Pereseckiy AA (2004) Econometrics. Beginners Guide. 6th edition. pp. 185-303. (Эконометрика. Начальный курс-In Russian)Google Scholar
  23. Magnus YR, Katishev PK, Pereseckiy AA (2005) Methods of Box-Jenkins (ARIMA): econometrics. Beginners Guide. 7th edition. pp. 253-275 (Модели Бокса-Дженкинса (ARIMA)// Эконометрика. Начальныйкурс: учебник -In Russian)Google Scholar
  24. Muradov A, Hasanli Y, Hajiyev N (2016) Econometric evaluation of the dependence of factors influencing oil prices, EcoMod. International Conference on Economic Modeling, Lisbon, Portugal, July 6-8, 2016.Google Scholar
  25. Muradov A, Hasanli Y, Hajiyev N, Akbarov R (2018) Modeling the impact of the solar activity on demographic and economic indicators. International Journal of Energy Economics and Policy, 8 (4), 120–124Google Scholar
  26. Obridko VN, Oraevsky VN (1993) International studies of solar activity: Earth and the universe. № 5. p. 12-19.Google Scholar
  27. Pakhalov A (2011) The influence of solar activity on the investors' behavior in the stock markets (Влияние Солнечной Активности На Поведение Инвесторов На Фондовых Рынках-In Russian).Google Scholar
  28. Sharpe ME (1994) A Portrait in oil: challenges, Vol. 2, №6, pp. 39-44Google Scholar
  29. Stiglitz J (1975) The efficiency of market prices in long-run allocations in the oil industry. Studies in energy tax policy. Cambridge, ass.Google Scholar
  30. Sytinsky AD (1998) On the geoeffectiveness of the solar wind, Report. AN1988 No. 6 C. 1355-1357Google Scholar
  31. Lupachev YV, Chizhevsky AL (1996) Historiometric cycles: reality and prognostic possibilities.Google Scholar
  32. US Energy Information Administration (2018a) Annual energy outlook 2018 with projections to 2050. Available at:
  33. US Energy Information Administration (2018b) Available at:
  34. World Bank (2018) World Bank Commodities Price Data. Available at:
  35. Yandiev M (2010) Speculative component of market quotations of financial assets. LAP LAMBERT Academic Publishing, . ISBN 978-3-8433-7694-5. SSRN:

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adalat Muradov
    • 1
  • Yadulla Hasanli
    • 1
  • Nazim Hajiyev
    • 1
    • 2
  1. 1.Azerbaijan State University of EconomicsBakuAzerbaijan
  2. 2.Harvard UniversityCambridgeUSA

Personalised recommendations