Advertisement

Preference Disaggregation for Multicriteria Decision Aiding: An Overview and Perspectives

  • Michalis DoumposEmail author
  • Constantin Zopounidis
Chapter
Part of the Multiple Criteria Decision Making book series (MCDM)

Abstract

In multicriteria decision aiding, preference disaggregation analysis involves the inference of preferential information from holistic judgments that the decision maker provides. This area of research has attracted strong interest and various methodologies have been proposed over the past three decades for different types of decision problems and multicriteria models. This chapter overviews the developments and perspective in this field, covering established techniques as well as the state-of-the-art developments and future prospects.

Keywords

Multicriteria decision aiding Preference disaggregation Linear programming Robustness 

References

  1. Angilella, S., Greco, S., & Matarazzo, B. (2010). Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral. European Journal of Operational Research, 201(1), 277–288.CrossRefGoogle Scholar
  2. Bana e Costa, C. A. B., Corte, J. M. D., & Vansnick, J. C. (2016). On the mathematical foundations of MACBETH. In: S. Greco, M. Ehrgott, J. Figueira (Eds.), Multiple criteria decision analysis—State of the art surveys (pp. 421–463). New York: Springer.Google Scholar
  3. Belacel, N., Bhasker Raval, H., & Punnenc, A. P. (2007). Learning multicriteria fuzzy classification method PROAFTN from data. Computers and Operations Research, 34, 1885–1898.Google Scholar
  4. Belahcène, K., Labreuche, C., Maudet, N., Mousseau, V., & Ouerdane, W. (2018). An efficient SAT formulation for learning multiple criteria non-compensatory sorting rules from examples. Computers & Operations Research, 97, 58–71.Google Scholar
  5. Bisdorff, R., Meyer, P., & Veneziano, T. (2013). Elicitation of criteria weights maximising the stability of pairwise outranking statements. Journal of Multi-Criteria Decision Analysis, 21(1–2), 113–124.Google Scholar
  6. Bous, B., Fortemps, P., Glineur, F., & Pirlot, M. (2010). ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements. European Journal of Operational Research, 206(2), 435–444.CrossRefGoogle Scholar
  7. Brans, J. P., & De Smet, Y. (2016). Promethee methods. In S. Greco, M. Ehrgott, & J. Figueira (Eds.), Multiple criteria decision analysis-state of the art surveys (pp. 187–220). New York: Springer.CrossRefGoogle Scholar
  8. Cailloux, O., Tervonen, T., Verhaegen, B., & Picalausa, F. (2014). A data model for algorithmic multiple criteria decision analysis. Annals of Operations Research, 217(1), 77–94.CrossRefGoogle Scholar
  9. Chen, J., & Lin, S. (2003). An interactive neural network-based approach for solving multiple criteria decision-making problems. Decision Support Systems, 36, 137–146.CrossRefGoogle Scholar
  10. Corrente, S., Greco, S., Kadziński, M., & Słowiński, R. (2016). Inducing probability distributions on the set of value functions by subjective stochastic ordinal regression. Knowledge-Based Systems, 112, 26–36.CrossRefGoogle Scholar
  11. Covantes, E., Fernández, E., & Navarro, J. (2016). Handling the multiplicity of solutions in a MOEA based PDA-THESEUS framework for multi-criteria sorting. Foundations of Computing and Decision Sciences, 41(4), 213–235.CrossRefGoogle Scholar
  12. Dias, L., & Mousseau, V. (2006). Inferring ELECTRE’s veto-related parameters from outranking examples. European Journal of Operational Research, 170(1), 172–191.CrossRefGoogle Scholar
  13. Dias, L., Mousseau, V., Figueira, J., & Clímaco, J. (2002). An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI. European Journal of Operational Research, 138(2), 332–348.CrossRefGoogle Scholar
  14. Doumpos, M. (2010). Learning non-monotonic additive value functions for multicriteria decision making. OR Spectrum, 34(1), 89–106.CrossRefGoogle Scholar
  15. Doumpos, M., Marinakis, Y., Marinaki, M., & Zopounidis, C. (2009). An evolutionary approach to construction of outranking models for multicriteria classification: The case of the ELECTRE TRI method. European Journal of Operational Research, 199(2), 496–505.CrossRefGoogle Scholar
  16. Doumpos, M., & Zopounidis, C. (2002). Multicriteria decision aid classification methods. Dordrecht: Springer.Google Scholar
  17. Doumpos, M., & Zopounidis, C. (2002). On the development of an outranking relation for ordinal classification problems: An experimental investigation of a new methodology. Optimization Methods and Software, 17(2), 293–317.CrossRefGoogle Scholar
  18. Doumpos, M., & Zopounidis, C. (2004). A multicriteria classification approach based on pairwise comparisons. European Journal of Operational Research, 158(2), 378–389.CrossRefGoogle Scholar
  19. Doumpos, M., & Zopounidis, C. (2007). Regularized estimation for preference disaggregation in multiple criteria decision making. Computational Optimization and Applications, 38(1), 61–80.CrossRefGoogle Scholar
  20. Doumpos, M., & Zopounidis, C. (2011). Preference disaggregation and statistical learning for multicriteria decision support: A review. European Journal of Operational Research, 209(3), 203–214.CrossRefGoogle Scholar
  21. Doumpos, M., & Zopounidis, C. (2016). Data-driven robustness analysis for multicriteria classification problems using preference disaggregation approaches. In M. Doumpos, C. Zopounidis, & E. Grigoroudis (Eds.), Robustness analysis in decision aiding, optimization, and analytics (pp. 21–37). New York: Springer.Google Scholar
  22. Eppe, S., & De Smet, Y. (2012). Studying the impact of information structure in the PROMETHEE II preference elicitation process: A simulation based approach. In S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, & R. R. Yager (Eds.), Communications in computer and information science (pp. 383–392). Berlin, Heidelberg: Springer.Google Scholar
  23. Fernandez, E., Navarro, J., & Mazcorro, G. (2012). Evolutionary multi-objective optimization for inferring outranking model’s parameters under scarce reference information and effects of reinforced preference. Foundations of Computing and Decision Sciences, 37(3), 163–197.CrossRefGoogle Scholar
  24. Figueira, J. R., Greco, S., & Słowiński, R. (2009). Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method. European Journal of Operational Research, 195(2), 460–486.CrossRefGoogle Scholar
  25. Figueira, J. R., Mousseau, V., & Roy, B. (2016). ELECTRE methods. In S. Greco, M. Ehrgott, & J. Figueira (Eds.), Multiple criteria decision analysis—State of the art surveys (pp. 155–185). New York: Springer.Google Scholar
  26. Fortemps, P., Greco, S., & Słowiński, R. (2008). Multicriteria decision support using rules that represent rough-graded preference relations. European Journal of Operational Research, 188, 206–223.Google Scholar
  27. Frikha, H., Chabchoub, H., & Martel, J. M. (2010). Inferring criteria’s relative importance coefficients in PROMETHEE II. International Journal of Operational Research, 7(2), 257.CrossRefGoogle Scholar
  28. Frikha, H., Chabchoub, H., & Martel, J. M. (2011). An interactive disaggregation approach inferring the indifference and the preference thresholds of PROMETHEE II. International Journal of Multicriteria Decision Making, 1(4), 365.CrossRefGoogle Scholar
  29. Fürnkranz, J., & Hüllermeier, E. (2011). Preference learning. Berlin, Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-14125-6.
  30. Goletsis, Y., Papaloukas, C., Fotiadis, D. I., Likas, A., & Michalis, L. K. (2004). Automated ischemic beat classification using genetic algorithms and multicriteria decision analysis. IEEE Transactions on Biomedical Engineering, 51(10), 1717–1725.CrossRefGoogle Scholar
  31. Grabisch, M., & Labreuche, C. (2008). A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. 4OR, 6(1), 1–44.Google Scholar
  32. Greco, S., Kadziński, M., Mousseau, V., & Słowiński, R. (2011). ELECTRE\(^{\rm GKMS}\): Robust ordinal regression for outranking methods. European Journal of Operational Research, 214(1), 118–135.CrossRefGoogle Scholar
  33. Greco, S., Kadziński, M., Mousseau, V., & Słowiński, R. (2012). Robust ordinal regression for multiple criteria group decision: UTA\(^{\rm GMS}\)-GROUP and UTADIS\(^{\rm GKMS}\)-GROUP. Decision Support Systems, 52(3), 549–561.CrossRefGoogle Scholar
  34. Greco, S., Matarazzo, B., & Słowiński, R. (1999). Rough approximation of a preference relation by dominance relations. European Journal of Operational Research, 117, 63–83.CrossRefGoogle Scholar
  35. Greco, S., Matarazzo, B., & Słowiński, R. (2001). Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129(1), 1–47.CrossRefGoogle Scholar
  36. Greco, S., Matarazzo, B., & Słowiński, R. (2004). Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules. European Journal of Operational Research, 158(2), 271–292.Google Scholar
  37. Greco, S., Matarazzo, B., & Słowiński, R. (2008). Dominance-based rough set approach to interactive multiobjective optimization. In J. Branke, K. Deb, K. Miettinen, & R. Slowinski (Eds.), Multiobjective optimization (pp. 121–155). Berlin: Springer.Google Scholar
  38. Greco, S., Mousseau, V., & Słowiński, R. (2008). Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions. European Journal of Operational Research, 191(2), 416–436.CrossRefGoogle Scholar
  39. Greco, S., Mousseau, V., & Słowiński, R. (2010). Multiple criteria sorting with a set of additive value functions. European Journal of Operational Research, 207(3), 1455–1470.CrossRefGoogle Scholar
  40. Greco, S., Słowiński, R., Figueira, J. R., & Mousseau, V. (2008). Robust ordinal regression. In M. Ehrgott, S. Greco, & J. Figueira (Eds.), Trends in multiple criteria decision analysis (pp. 241–283). New York: Springer.Google Scholar
  41. Greco, S., Słowiński, R., & Yao, Y. (2007). Bayesian decision theory for dominance-based rough set approach. In J. Yao, P. Lingras, W. Z. Wu, M. Szczuka, N. Cercone, & S. Ślȩzak (Eds.), Rough sets and knowledge technology (pp. 134–141). Berlin: Springer.Google Scholar
  42. Grigoroudis, E., & Siskos, Y. (2002). Preference disaggregation for measuring and analysing customer satisfaction: The MUSA method. European Journal of Operational Research, 143(1), 148–170.CrossRefGoogle Scholar
  43. Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In A. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 115–132). Cambridge, MA: MIT Press.Google Scholar
  44. Hu, Y. C. (2009). Bankruptcy prediction using electre-based single-layer perceptron. Neurocomputing, 72, 3150–3157.CrossRefGoogle Scholar
  45. Jacquet-Lagrèze, E., & Siskos, Y. (1982). Assessing a set of additive utility functions for multicriteria decision making: The UTA method. European Journal of Operational Research, 10, 151–164.CrossRefGoogle Scholar
  46. Jacquet-Lagrèze, E., & Siskos, Y. (2001). Preference disaggregation: 20 years of MCDA experience. European Journal of Operational Research, 130, 233–245.CrossRefGoogle Scholar
  47. Kadziński, M., & Ciomek, K. (2016). Integrated framework for preference modeling and robustness analysis for outranking-based multiple criteria sorting with ELECTRE and PROMETHEE. Information Sciences, 352–353, 167–187.CrossRefGoogle Scholar
  48. Kadzinski, M., Ghaderi, M., Wasikowski, J., & Agell, N. (2017). Expressiveness and robustness measures for the evaluation of an additive value function in multiple criteria preference disaggregation methods: An experimental analysis. Computers & Operations Research, 87, 146–164.CrossRefGoogle Scholar
  49. Kadziński, M., Greco, S., & Słowiński, R. (2012). Extreme ranking analysis in robust ordinal regression. Omega, 40(4), 488–501.Google Scholar
  50. Kadziński, M., & Michalski, M. (2016). Scoring procedures for multiple criteria decision aiding with robust and stochastic ordinal regression. Computers & Operations Research, 71, 54–70.CrossRefGoogle Scholar
  51. Kadziński, M., Słowiński, R., & Greco, S. (2016). Robustness analysis for decision under uncertainty with rule-based preference model. Information Sciences, 328, 321–339.CrossRefGoogle Scholar
  52. Kadziński, M., & Tervonen, T. (2013). Stochastic ordinal regression for multiple criteria sorting problems. Decision Support Systems, 55(1), 55–66.CrossRefGoogle Scholar
  53. Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: Preferences and value trade-offs. Cambridge: Cambridge University Press.Google Scholar
  54. Köksalan, M., Mousseau, V., & Zpeynirci, S. Multi-criteria sorting with category size restrictions. International Journal of Information Technology & Decision Making, 16(01), 5–23 (2017)Google Scholar
  55. Kojadinovic, I. (2004). Estimation of the weights of interacting criteria from the set of profiles by means of information-theoretic functionals. European Journal of Operational Research, 155(3), 741–751.CrossRefGoogle Scholar
  56. Lahdelma, R., & Salminen, P. (2001). SMAA-2: Stochastic multicriteria acceptability analysis for group decision making. Operations Research, 49(3), 444–454.CrossRefGoogle Scholar
  57. Malakooti, B., & Raman, V. (2000). Clustering and selection of multiple criteria alternatives using unsupervised and supervised neural networks. Journal of Intelligent Manufacturing, 11, 435–451.CrossRefGoogle Scholar
  58. Malakooti, B., & Zhou, Y. (1994). Feedforward artificial neural networks for solving discrete multiple criteria decision making problems. Management Science, 40(11), 1542–1561.CrossRefGoogle Scholar
  59. Marichal, J. L., & Roubens, M. (2000). Determination of weights of interacting criteria from a reference set. European Journal of Operational Research, 124(3), 641–650.CrossRefGoogle Scholar
  60. Martel, J. M., & Matarazzo, B. (2016). Other outranking approaches. In S. Greco, M. Ehrgott, & J. Figueira (Eds.), Multiple criteria decision analysis: State of the art surveys (pp. 221–282). New York: Springer.Google Scholar
  61. Mousseau, V., Figueira, J., Dias, L., Gomes da Silva, C., & Clímaco, J. (2003). Resolving inconsistencies among constraints on the parameters of an MCDA model. European Journal of Operational Research, 147(1), 72–93.Google Scholar
  62. Mousseau, V., Figueira, J., & Naux, J. P. (2001). Using assignment examples to infer weights for ELECTRE TRI method: Some experimental results. European Journal of Operational Research, 130, 263–275.CrossRefGoogle Scholar
  63. Mousseau, V., & Słowiński, R. (1998). Inferring an ELECTRE-TRI model from assignment examples. Journal of Global Optimization, 12(2), 157–174.CrossRefGoogle Scholar
  64. Pahikkala, T., Waegeman, W., Tsivtsivadze, E., Salakoski, T., & De Baets, B. (2010). Learning intransitive reciprocal relations with kernel methods. European Journal of Operational Research, 206(3), 676–685.Google Scholar
  65. Pawlak, Z., & Słowiński, R. (1994). Rough set approach to multi-attribute decision analysis. European Journal of Operational Research, 72, 443–459.Google Scholar
  66. Roy, B. (1968). Classement et choix en présence de points de vue multiples: La méthode ELECTRE. Revue Francaise d’Informatique et de Recherche Opérationnelle, 8, 57–75.CrossRefGoogle Scholar
  67. Roy, B. (1996). Multicriteria methodology for decision aiding. New York: Springer.Google Scholar
  68. Roy, B., & Bouyssou, D. (1993). Aide multicritre à la décision: Méthodes et Cas. Paris, France: Economica.Google Scholar
  69. Siskos, Y., & Grigoroudis, E. (2010). New trends in aggregation-disaggregation approaches. In C. Zopounidis & P. Pardalos (Eds.), Handbook of multicriteria analysis (pp. 189–214). Berlin, Heidelberg: Springer.Google Scholar
  70. Siskos, Y., Grigoroudis, E., & Matsatsinis, N. F. (2016). UTA methods. In S. Greco, M. Ehrgott, & J. Figueira (Eds.), Multiple criteria decision analysis—State of the art surveys (2nd ed., pp. 315–362). New York: Springer.CrossRefGoogle Scholar
  71. Sobrie, O., Mousseau, V., & Pirlot, M. (2013). Learning a majority rule model from large sets of assignment examples. In P. Perny, M. Pirlot, & A. Tsoukiàs (Eds.), Proceedings of Third International Conference on Algorithmic Decision Theory, ADT 2013, Bruxelles, Belgium, 12–14 Nov 2013 (pp. 336–350). Berlin, Heidelberg: Springer.Google Scholar
  72. Sobrie, O., Mousseau, V., & Pirlot, M. (2018). Learning monotone preferences using a majority rule sorting model. International Transactions in Operational Research.Google Scholar
  73. Tervonen, T., Figueira, J. R., Lahdelma, R., Dias, J. A., & Salminen, P. (2009). A stochastic method for robustness analysis in sorting problems. European Journal of Operational Research, 192(1), 236–242.CrossRefGoogle Scholar
  74. Van Assche, D., & De Smet, Y. (2016). FlowSort parameters elicitation based on categorisation examples. International Journal of Multicriteria Decision Making, 6(3), 191.Google Scholar
  75. Vetschera, R., Chen, Y., Hipel, K. W., & Kilgour, D. M. (2010). Robustness and information levels in case-based multiple criteria sorting. European Journal of Operational Research, 202(3), 841–852.CrossRefGoogle Scholar
  76. Waegeman, W., De Baets, B., & Boullart, B. (2009). Kernel-based learning methods for preference aggregation. 4OR, 7, 169–189 (2009).Google Scholar
  77. Zheng, J., Takougang, S., Mousseau, V., & Pirlot, M. (2014). Learning criteria weights of an optimistic ELECTRE TRI sorting rule. Computers & Operations Research, 49, 28–40.CrossRefGoogle Scholar
  78. Zopounidis, C., & Doumpos, M. (2000). Building additive utilities for multi-group hierarchical discrimination: The M.H.D is method. Optimization Methods and Software, 14(3), 219–240.Google Scholar
  79. Zopounidis, C., & Doumpos, M. (2002). Multicriteria classification and sorting methods: A literature review. European Journal of Operational Research, 138(2), 229–246.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Technical University of Crete, School of Production Engineering and ManagementUniversity CampusChaniaGreece
  2. 2.Audencia Business School, Institute of FinanceNantesFrance

Personalised recommendations