Advertisement

Beyond Multicriteria Ranking Problems: The Case of PROMETHEE

  • Yves De SmetEmail author
Chapter
Part of the Multiple Criteria Decision Making book series (MCDM)

Abstract

PROMETHEE is a well-known multicriteria outranking method. If it was primarily developed for (complete or partial) ranking purposes, recent extensions have been proposed in sorting and clustering contexts. Among them, the methods called PROMETHEE TRI and PROMETHEE CLUSTER were first presented in 2004. Unfortunately, these suffered from some drawbacks that we highlight in this contribution. To overcome these problems, authors have developed other extensions such as FlowSort, PCLUST, etc. The purpose of this paper is to provide a summary of some of these contributions, to highlight their existing links and list several remaining research questions. From a global perspective, we will show that the boundaries between ranking, sorting and clustering are blurred.

Keywords

PROMETHEE Sorting Multicriteria clustering FlowSort PClust 

References

  1. Behzadian, M., Kazemzadeh, R. B., Albadvi, A., & Aghdasi, M. (2010). Promethee: A comprehensive literature review on methodologies and applications. European Journal of Operational Research, 200(1), 198–215.CrossRefGoogle Scholar
  2. Belacel, N. (2000). Multicriteria assignment method PROAFTN: Methodology and medical application. European Journal of Operational Research, 125(1), 175–183.CrossRefGoogle Scholar
  3. Boujelben, M. A. (2017). A unicriterion analysis based on the promethee principles for multicriteria ordered clustering. Omega, 69(Supplement C), 126–140.CrossRefGoogle Scholar
  4. Boujelben, M. A., & De Smet, Y. (2016). A multicriteria ordered clustering algorithm to determine precise or disjunctive partitions. International Journal of Multicriteria Decision Making, 6(2), 157–187.CrossRefGoogle Scholar
  5. Bouyssou, D., & Perny, P. (1992). Ranking methods for valued preference relations: A characterization of a method based on leaving and entering flows. European Journal of Operational Research, 61(1), 186–194. IFORS-SPC Conference on Decision Support Systems.CrossRefGoogle Scholar
  6. Brans, J. P., & Mareschal, B. (1992). PROMETHEE V: MCDM problems with segmentation constraints. INFOR: Information Systems and Operational Research, 30(2), 85–96.Google Scholar
  7. Brans, J.-P., & Mareschal, B. (1994). The promcalc & gaia decision support system for multicriteria decision aid. Decision Support Systems, 12(4), 297–310.CrossRefGoogle Scholar
  8. Cailloux, O., Lamboray, C., & Nemery, P. (2007). A taxonomy of clustering procedures. In 66th Meeting of the European Working Group on MCDA (p. N/A), Marrakech, MoroccoGoogle Scholar
  9. Calders, T., & Van Assche, D. (2018). PROMETHEE is not quadratic: An o(qnlog(n)) algorithm. Omega, 76(Supplement C), 63–69.Google Scholar
  10. Campos, A. C. S. M., Mareschal, B., & de Almeida, A. T. (2015). Fuzzy flowsort: An integration of the flowsort method and fuzzy set theory for decision making on the basis of inaccurate quantitative data. Information Sciences, 293(Supplement C), 115–124.Google Scholar
  11. Doan, N. A. V., & De Smet, Y. (2016, December). On the use of reference profiles to compute alternative PROMETHEE II rankings: A preliminary study. In 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 326–330)Google Scholar
  12. Doumpos, M., & Zopounidis, C. (2002). Multicriteria Decision Aid Classification Methods (Vol. 73). Applied Optimization. Boston: Springer, Formerly Kluwer Academic Publishers.Google Scholar
  13. Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern Classification (2nd ed.). New York: Wiley-Interscience.Google Scholar
  14. Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4(1), 95–104.CrossRefGoogle Scholar
  15. Eppe, S., Roland, J., & De Smet, Y. (2014). On the use of valued action profiles for relational multi-criteria clustering. International Journal of Multicriteria Decision Making, 4(3), 201–233. PMID: 64796.CrossRefGoogle Scholar
  16. Eppe, S., & De Smet, Y. (2017). On the influence of altering the action set on PROMETHEE ii’s relative ranks. In Proceedings of Evolutionary Multi-Criterion Optimization - 9th International Conference, EMO 2017, Münster, Germany, March 19–22, 2017 (pp. 206–220).Google Scholar
  17. Fernandez, E., Navarro, J., & Bernal, S. (2010). Handling multicriteria preferences in cluster analysis. European Journal of Operational Research, 202(3), 819–827.CrossRefGoogle Scholar
  18. Figueira, J., De Smet, Y., & Brans, J. P. (2004). MCDA methods for sorting and clustering problems: Promethee TRI and promethee CLUSTER. Technical report TR/SMG/2004-002, SMG, Université Libre de Bruxelles.Google Scholar
  19. Hayez, Q., De Smet, Y., & Bonney, J. (2012). D-sight: A new decision making software to address multi-criteria problems. International Journal of Decision Support System Technology (IJDSST), 4(4), 1–23.CrossRefGoogle Scholar
  20. Janssen, P., & Nemery, P. (2013). An extension of the flowsort sorting method to deal with imprecision. 4OR, 11(2):171–193.Google Scholar
  21. De Keyser, W., & Peeters, P. (1996). A note on the use of promethee multicriteria methods. European Journal of Operational Research, 89(3), 457–461.CrossRefGoogle Scholar
  22. Köksalan, M., Mousseau, V., & Özpeynirci, S. (2017). Multi-criteria sorting with category size restrictions. International Journal of Information Technology & Decision Making, 16(01), 5–23.CrossRefGoogle Scholar
  23. Larichev, O., & Moshkovich, H. (1994). An approach to ordinal classification problems. International Transactions in Operational Research, 1(3), 375–385.CrossRefGoogle Scholar
  24. Liu, Y., Xindong, W., & Shen, Y.-D. (2011). Automatic clustering using genetic algorithms. Applied Mathematics and Computation, 218(4), 1267–1279.CrossRefGoogle Scholar
  25. Lolli, F., Ishizaka, A., Gamberini, R., Rimini, B., & Messori, M. (2015). Flowsort-gdss a novel group multi-criteria decision support system for sorting problems with application to fmea. Expert Systems with Applications, 42(17), 6342–6349.CrossRefGoogle Scholar
  26. Mareschal, B., De Smet, Y., & Nemery, P. (2008, December). Rank reversal in the promethee ii method: Some new results. In 2008 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 959–963).Google Scholar
  27. Massaglia, R., & Ostanello, A. (1991). N-TOMIC: A support system for multicriteria segmentation problems. In P. Korhonen, A. Lewandowski, & J. Wallenius (Eds.), Multiple Criteria Decision Support: Proceedings, Helsinki, Finland, 1989 (Vol. 356, pp. 167–174). Lectures Notes in Economics and Mathematical Systems. Berlin: Springer.Google Scholar
  28. Meyer, P., & Olteanu, A.-L. (2013). Formalizing and solving the problem of clustering in mcda. European Journal of Operational Research, 227(3), 494–502.CrossRefGoogle Scholar
  29. Moscarola, J., & Roy, B. (1977). Procédure automatique d’examen de dossiers fondée sur une segmentation trichotomique en présence de critères multiples. R.A.I.R.O. Recherche Opérationnelle/Operations Research, 11(2), 145–173.Google Scholar
  30. Nemery, P., & Lamboray, C. (2008). Flowsort: A flow-based sorting method with limiting or central profiles. TOP, 16(1), 90–113.CrossRefGoogle Scholar
  31. Nemery De Bellevaux, P. (2008, November). On the use of multicriteria ranking methods in sorting problems. Ph.D. thesis, Université libre de Bruxelles, Brussels, Belgium.Google Scholar
  32. Rocha, C., Dias, L. C., & Dimas, I. (2013). Multicriteria classification with unknown categories: A clustering-sorting approach and an application to conflict management. Journal of Multi-criteria Decision Analysis, 20(1–2), 13–27.CrossRefGoogle Scholar
  33. Roland, J., De Smet, Y., & Verly, C. (2012). Rank reversal as a source of uncertainty and manipulation in the PROMETHEE II ranking: A first investigation. In Advances in Computational Intelligence - 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2012, Catania, Italy, July 9–13, 2012, Proceedings, Part IV (pp. 338–346).Google Scholar
  34. Rolland, A. (2013). Reference-based preferences aggregation procedures in multi-criteria decision making. European Journal of Operational Research, 225(3), 479–486.CrossRefGoogle Scholar
  35. Rosenfeld, J., & De Smet, Y. (2017). An extension of promethee to hierarchical multicriteria clustering. Technical report TR/SMG/2017-001, SMG, Université Libre de Bruxelles.Google Scholar
  36. Roy, B. (1996). Multicriteria Methodology for Decision Aiding. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  37. Sarrazin, R., De Smet, Y., & Rosenfeld, J. (2018). An extension of promethee to interval clustering. Omega, 80, 12–21.Google Scholar
  38. De Smet, Y. (2014, December). An extension of promethee to divisive hierarchical multicriteria clustering. In 2014 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 555–558).Google Scholar
  39. De Smet, Y., & Guzmàn, L. M. (2004). Towards multicriteria clustering: An extension of the k-means algorithm. European Journal of Operational Research, 158(2), 390–398. Methodological Foundations of Multi-criteria Decision Making.CrossRefGoogle Scholar
  40. De Smet, Y., Hubinont, J. P., & Rosenfeld, J. (2017). A note on the detection of outliers in a binary outranking relation. In Proceedings of Evolutionary Multi-Criterion Optimization - 9th International Conference, EMO 2017, Münster, Germany, March 19–22, 2017 (pp. 151–159).Google Scholar
  41. De Smet, Y., Nemery, P., & Selvaraj, R. (2012). An exact algorithm for the multicriteria ordered clustering problem. Omega, 40(6), 861–869. Special Issue on Forecasting in Management Science.Google Scholar
  42. Sobrie, O. (2016, June). Learning preferences with multiple-criteria models. Ph.D. thesis, Université de Mons (Faculté Polytechnique) and Université Paris-Saclay (CentraleSupélec).Google Scholar
  43. Van Assche, D., & De Smet, Y. (2016). Flowsort parameters elicitation based on categorisation examples. International Journal of Multicriteria Decision Making, 6(3), 191–210.CrossRefGoogle Scholar
  44. Verly, C., & De Smet, Y. (2013). Some results about rank reversal instances in the promethee methods. International Journal of Multicriteria Decision Making, 3(4), 325–345.CrossRefGoogle Scholar
  45. Vincke, P. (1992). Multicriteria Decision-Aid. New York: Wiley.Google Scholar
  46. Yu, W. (1992). Aide Multicritère à la Décision dans le Cadre de la Problématique du Tri : Concepts. Méthodes et Applications. Thèse de Doctorat: LAMSADE, Université Paris Dauphine, Paris, France.Google Scholar
  47. Zopounidis, C., & Doumpos, M. (2002). Multicriteria classification and sorting methods: A literature review. European Journal of Operational Research, 138(2), 229–246.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SMG research unit, Computer and Decision Engineering DepartmentUniversité libre de Bruxelles, Ecole polytechnique de BruxellesCity of BrusselsBelgium

Personalised recommendations