Advertisement

Biodegradation of Nitriles by Rhodococcus

  • Huimin YuEmail author
  • Song Jiao
  • Miaomiao Wang
  • Youxiang Liang
  • Lingjun Tang
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 16)

Abstract

Nitriles occur naturally in the environment, are produced by the metabolic pathways of organisms or are released by the chemical and pharmaceutical industries, from agricultural applications or from the processing of fossil fuels. Therefore, a variety of nitrile-converting bacterial species are used to alleviate this toxic effect. Among these bacteria, Rhodococcus species have proven to be a superior group for the clean-up of pollutants. Nitriles are converted into the less toxic carboxylic acid either by nitrilases or by nitrile hydratase (NHase)/amidase systems. Although NHases, nitrilases and amidases produced by different strains exhibit different catalytic characteristics towards aliphatic nitriles and aromatic nitriles, these enzymes exhibit considerable homology in amino acid sequence or structure. In contrast, the enzymes with different origins present different types of gene organization and regulatory patterns, although the amidase gene is always linked to the NHase gene. Due to the advantage of being resistant to toxic compounds, applications of Rhodococcus in pollutant biodegradation and biocatalytic processes are very promising. While studies on the biodegradation of nitrile pollutants focus on the screening and discovery of strains, the industrial application of these enzymes as biocatalysts focuses on engineering combined with immobilization of both Rhodococcus cells and enzymes to improve their performance under the adverse conditions in the catalytic process.

Notes

Acknowledgements

Support via the projects NSFC-21776157/21476126 (the National Natural Science Foundation of China) and 973-2013CB733600 (the National Key Basic Research Project 973) is gratefully acknowledged.

References

  1. Alexander M (2001) Biodegradation and bioremediation. Q Rev Biol 2:1–2Google Scholar
  2. An X, Cheng Y, Huang M, Sun Y, Wang H, Chen X, Wang J, Li D, Li C (2018) Treating organic cyanide-containing groundwater by immobilization of a nitrile-degrading bacterium with a biofilm-forming bacterium using fluidized bed reactors. Environ Pollut 237:908–916PubMedCrossRefPubMedCentralGoogle Scholar
  3. Andrade J, Karmali A, Carrondo MA, Frazao C (2007) Structure of amidase from pseudomonas aeruginosa showing a trapped acyl transfer reaction intermediate state. J Biol Chem 282(27):19598–19605PubMedCrossRefPubMedCentralGoogle Scholar
  4. Asano Y, Tani Y, Yamada H (1980) A new enzyme “nitrile hydratase” which degrades acetonitrile in combination with amidase. Agric Biol Chem 44(9):2251–2252Google Scholar
  5. Baxter J, Garton N, Cummings S (2006) The impact of acrylonitrile and bioaugmentation on the biodegradation activity and bacterial community structure of a topsoil. Folia Microbiol 51(6):591–597CrossRefGoogle Scholar
  6. Bhalla TC, Miura A, Wakamoto A, Ohba Y, Furuhashi K (1992) Asymmetric hydrolysis of α-aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34. Appl Microbiol Biotechnol 37(2):184–190CrossRefGoogle Scholar
  7. Bhalla TC, Sharma N, Bhatia RK (2012) Microbial degradation of cyanides and nitriles. In: Satyanarayana T, Narain JB, Prakash A (eds) Microorganisms in environmental management. Springer, Dordrecht, pp 569–587CrossRefGoogle Scholar
  8. Bhalla TC, Kumar V, Kumar V, Thakur N (2018) Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl Biochem Biotechnol 185:1–22CrossRefGoogle Scholar
  9. Chen J, Yu H, Liu C, Liu J, Shen Z (2013) Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. J Biotechnol 164(2):354–362CrossRefGoogle Scholar
  10. Cowan D, Cramp R, Pereira R, Graham D, Almatawah Q (1998) Biochemistry and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes. Extremophiles 2(3):207–216PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cramp RA, Cowan DA (1999) Molecular characterisation of a novel thermophilic nitrile hydratase. Biochim Biophys Acta 1431(1):249–260PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cui Y, Cui W, Liu Z, Zhou L, Kobayashi M, Zhou Z (2014) Improvement of stability of nitrile hydratase via protein fragment swapping. Biochem Biophys Res Commun 450(1):401–408PubMedCrossRefPubMedCentralGoogle Scholar
  13. DeLorenzo DM, Rottinghaus AG, Henson WR, Moon TS (2018) Molecular toolkit for gene expression control and genome modification in Rhodococcus opacus PD630. ACS Synth Biol 7(2):727–738PubMedCrossRefPubMedCentralGoogle Scholar
  14. Dong H-P, Liu Z-Q, Zheng Y-G, Shen Y-C (2010) Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis. Appl Microbiol Biotechnol 87(4):1335–1345PubMedCrossRefPubMedCentralGoogle Scholar
  15. Endo I, Nojiri M, Tsujimura M, Nakasako M, Nagashima S, Yohda M, Odaka M (2001) Fe-type nitrile hydratase. J Inorg Biochem 83(4):247–253PubMedCrossRefPubMedCentralGoogle Scholar
  16. Fang S, An X, Liu H, Cheng Y, Hou N, Feng L, Huang X, Li C (2015) Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium. Bioresour Technol 185:28–34PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fleming FF, Yao L, Ravikumar P, Funk L, Shook BC (2010) Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 53(22):7902–7917PubMedPubMedCentralCrossRefGoogle Scholar
  18. Gong J-S, Lu Z-M, Li H, Shi J-S, Zhou Z-M, Xu Z-H (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11(1):142CrossRefGoogle Scholar
  19. Gong J-S, Shi J-S, Lu Z-M, Li H, Zhou Z-M, Xu Z-H (2017) Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises. Crit Rev Biotechnol 37(1):69–81PubMedCrossRefPubMedCentralGoogle Scholar
  20. Harper DB (1985) Characterization of a nitrilase from Nocardia sp. (Rhodochrous group) NCIB 11215, using p-hydroxybenzonitrile as sole carbon source. Int J Biochem 17(6):677–683PubMedCrossRefPubMedCentralGoogle Scholar
  21. He Y-C, Zhou Q, Ma C-L, Cai Z-Q, Wang L-Q, Zhao X-Y, Chen Q, Gao D-Z, Zheng M, Wang X-D (2012) Biosynthesis of benzoylformic acid from benzoyl cyanide by a newly isolated Rhodococcus sp. CCZU10-1 in toluene–water biphasic system. Bioresour Technol 115:88–95PubMedCrossRefPubMedCentralGoogle Scholar
  22. He Y-C, Wu Y-D, Pan X-H, Ma C-L (2014) Biosynthesis of terephthalic acid, isophthalic acid and their derivatives from the corresponding dinitriles by tetrachloroterephthalonitrile-induced Rhodococcus sp. Biotechnol Lett 36(2):341–347PubMedCrossRefPubMedCentralGoogle Scholar
  23. Holtze MS, Sørensen J, Hansen HCB, Aamand J (2006) Transformation of the herbicide 2, 6-dichlorobenzonitrile to the persistent metabolite 2, 6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase. Biodegradation 17(6):503–510PubMedCrossRefPubMedCentralGoogle Scholar
  24. Holtze MS, Sørensen SR, Sørensen J, Aamand J (2008) Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments–insights into degradation pathways, persistent metabolites and involved degrader organisms. Environ Pollut 154(2):155–168PubMedCrossRefPubMedCentralGoogle Scholar
  25. Hourai S, Miki M, Takashima Y, Mitsuda S, Yanagi K (2003) Crystal structure of nitrile hydratase from a thermophilic Bacillus smithii. Biochem Biophys Res Commun 312(2):340–345PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hoyle AJ, Bunch AW, Knowles CJ (1998) The nitrilases of Rhodococcus rhodochrous NCIMB 11216. Enzym Microb Technol 23(7–8):475–482CrossRefGoogle Scholar
  27. Huang W, Jia J, Cummings J, Nelson M, Schneider G, Lindqvist Y (1997) Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold. Structure 5(5):691–699PubMedCrossRefPubMedCentralGoogle Scholar
  28. Ismailsab M, Reddy PV, Nayak AS, Karegoudar TB (2017) Biotransformation of aromatic and heterocyclic amides by amidase of whole cells of Rhodococcus sp. MTB5: biocatalytic characterization and substrate specificity. Biocatalysis Biotransform 35(1):74–85CrossRefGoogle Scholar
  29. Jiao S, Chen J, Yu H, Shen Z (2017) Tuning and elucidation of the colony dimorphism in Rhodococcus ruber associated with cell flocculation in large scale fermentation. Appl Microbiol Biotechnol 101(16):6321–6332PubMedCrossRefPubMedCentralGoogle Scholar
  30. Jiao S, Yu H, Shen Z (2018) Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression. New Biotechnol 44:41–49CrossRefGoogle Scholar
  31. Jin L-Q, Li Y-F, Liu Z-Q, Zheng Y-G, Shen Y-C (2011) Characterization of a newly isolated strain Rhodococcus erythropolis ZJB-09149 transforming 2-chloro-3-cyanopyridine to 2-chloronicotinic acid. New Biotechnol 28(6):610–615CrossRefGoogle Scholar
  32. Kamal A, Kumar MS, Kumar CG, Shaik TB (2011) Bioconversion of acrylonitrile to acrylic acid by Rhodococcus ruber strain AKSH-84. J Microbiol Biotechnol 21(1):37–42PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kato Y, Yoshida S, Xie S-X, Asano Y (2004) Aldoxime dehydratase co-existing with nitrile hydratase and amidase in the iron-type nitrile hydratase-producer Rhodococcus sp. N-771. J Biosci Bioeng 97(4):250–259PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kimani SW, Agarkar VB, Cowan DA, Sayed FR, Sewell BT (2007) Structure of an aliphatic amidase from geobacillus pallidus rapc8. Acta Crystallogr 63(10):1048–1058Google Scholar
  35. Kobayashi M, Shimizu S (1998) Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nat Biotechnol 16(8):733PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kobayashi M, Shimizu S (2000) Nitrile hydrolases. Curr Opin Chem Biol 4(1):95–102PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kohyama E, Yoshimura A, Aoshima D, Yoshida T, Kawamoto H, Nagasawa T (2006) Convenient treatment of acetonitrile-containing wastes using the tandem combination of nitrile hydratase and amidase-producing microorganisms. Appl Microbiol Biotechnol 72(3):600–606PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kohyama E, Dohi M, Yoshimura A, Yoshida T, Nagasawa T (2007) Remaining acetamide in acetonitrile degradation using nitrile hydratase-and amidase-producing microorganisms. Appl Microbiol Biotechnol 74(4):829–835PubMedCrossRefPubMedCentralGoogle Scholar
  39. Komeda H, Hori Y, Kobayashi M, Shimizu S (1996a) Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci USA 93(20):10572–10577PubMedCrossRefPubMedCentralGoogle Scholar
  40. Komeda H, Kobayashi M, Shimizu S (1996b) Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc Natl Acad Sci USA 93(9):4267–4272PubMedCrossRefPubMedCentralGoogle Scholar
  41. Komeda H, Kobayashi M, Shimizu S (1996c) A novel gene cluster including the Rhodococcus rhodochrous J1 nhlBA genes encoding a low molecular mass nitrile hydratase (L-NHase) induced by its reaction product. J Biol Chem 271(26):15796–15802PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kubáč D, Čejková A, Masak J, Jirků V, Lemaire M, Gallienne E, Bolte J, Stloukal R, Martínková L (2006) Biotransformation of nitriles by Rhodococcus equi A4 immobilized in LentiKats®. J Mol Catal B Enzym 39(1–4):59–61CrossRefGoogle Scholar
  43. Kuhn ML, Martinez S, Gumataotao N, Bornscheuer U, Liu D, Holz RC (2012) The Fe-type nitrile hydratase from Comamonas testosteroni Ni1 does not require an activator accessory protein for expression in Escherichia coli. Biochem Biophys Res Commun 424(3):365–370PubMedCrossRefPubMedCentralGoogle Scholar
  44. Langdahl BR, Bisp P, Ingvorsen K (1996) Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment. Microbiology 142(1):145–154CrossRefGoogle Scholar
  45. Lee S, Park E-H, Ko H-J, Bang WG, Kim H-Y, Kim KH, Choi I-G (2015) Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family. Biochem Biophys Res Commun 467(2):268–274PubMedCrossRefPubMedCentralGoogle Scholar
  46. Li C, Li Y, Cheng X, Feng L, Xi C, Zhang Y (2013) Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment. Bioresour Technol 131:390–396PubMedCrossRefPubMedCentralGoogle Scholar
  47. Liang L-Y, Zheng Y-G, Shen Y-C (2008) Optimization of β-alanine production from β-aminopropionitrile by resting cells of Rhodococcus sp. G20 in a bubble column reactor using response surface methodology. Process Biochem 43(7):758–764CrossRefGoogle Scholar
  48. Liu Y, Cui W, Liu Z, Cui Y, Xia Y, Kobayashi M, Zhou Z (2014) Enhancement of thermo-stability and product tolerance of Pseudomonas putida nitrile hydratase by fusing with self-assembling peptide. J Biosci Bioeng 118(3):249–252PubMedCrossRefPubMedCentralGoogle Scholar
  49. Luo H, Wang T, Yu H (2006) Expression and catalyzing process of the nirilase in Rhodococcus rhodochrous tg1-A6. Mod Chem Ind 26:109Google Scholar
  50. Luo H, Ma J, Chang Y, Yu H, Shen Z (2016) Directed evolution and mutant characterization of Nitrilase from Rhodococcus rhodochrous tg1-A6. Appl Biochem Biotechnol 178(8):1510–1521PubMedCrossRefPubMedCentralGoogle Scholar
  51. Ma Y, Yu H (2012) Engineering of Rhodococcus cell catalysts for tolerance improvement by sigma factor mutation and active plasmid partition. J Ind Microbiol Biotechnol 39(10):1421–1430PubMedCrossRefPubMedCentralGoogle Scholar
  52. Ma Y, Yu H, Pan W, Liu C, Zhang S, Shen Z (2010) Identification of nitrile hydratase-producing Rhodococcus ruber TH and characterization of an amiE-negative mutant. Bioresour Technol 101(1):285–291PubMedCrossRefPubMedCentralGoogle Scholar
  53. Makhongela HS, Glowacka AE, Agarkar VB, Sewell BT, Weber B, Cameron RA et al (2007) Novel thermostable nitrilase superfamily amidase from geobacillus pallidus showing acyl transfer activity. Applied Microbiology & Biotechnology 75(4):801–811CrossRefGoogle Scholar
  54. Maksimova YG, Gorbunova A, Demakov V (2017) Stereoselective biotransformation of phenylglycine nitrile by heterogeneous biocatalyst based on immobilized bacterial cells and enzyme preparation. Dokl Biochem Biophys 1:183–185CrossRefGoogle Scholar
  55. Martínková L, Pátek M, Veselá AB, Kaplan O, Uhnáková B, Nešvera J (2010) Catabolism of nitriles in Rhodococcus. In: Biology of Rhodococcus Springer Berlin, pp 171–206Google Scholar
  56. Mathew CD, Nagasawa T, Kobayashi M, Yamada H (1988) Nitrilase-catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous J1. Appl Environ Microbiol 54(4):1030–1032PubMedPubMedCentralGoogle Scholar
  57. Meth-Cohn O, Wang M-X (1997) An in-depth study of the biotransformation of nitriles into amides and/or acids using Rhodococcus rhodochrous AJ270 1. J Chem Soc Perkin Trans 1(8):1099–1104CrossRefGoogle Scholar
  58. Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Crystal structure of cobalt-containing nitrile hydratase. Biochem Biophys Res Commun 288(5):1169–1174PubMedCrossRefPubMedCentralGoogle Scholar
  59. Mukram I, Nayak AS, Kirankumar B, Monisha T, Reddy PV, Karegoudar T (2015) Isolation and identification of a nitrile hydrolyzing bacterium and simultaneous utilization of aromatic and aliphatic nitriles. Int Biodeterior Biodegrad 100:165–171CrossRefGoogle Scholar
  60. Mukram I, Ramesh M, Monisha T, Nayak AS, Karegoudar T (2016) Biodegradation of butyronitrile and demonstration of its mineralization by Rhodococcus sp. MTB5. 3 Biotech 6(2):141PubMedPubMedCentralCrossRefGoogle Scholar
  61. Nagasawa T, Nakamura T, Yamada H (1990) Production of acrylic acid and methacrylic acid using Rhodococcus rhodochrous J1 nitrilase. Appl Microbiol Biotechnol 34(3):322–324Google Scholar
  62. Nagasawa T, Shimizu H, Yamada H (1993) The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl Microbiol Biotechnol 40(2-3):189–195CrossRefGoogle Scholar
  63. Nagashima S, Nakasako M, Dohmae N, Tsujimura M, Takio K, Odaka M, Yohda M, Kamiya N, Endo I (1998) Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms. Nat Struct Mol Biol 5(5):347CrossRefGoogle Scholar
  64. Nakai T, Hasegawa T, Yamashita E, Yamamoto M, Kumasaka T, Ueki T, Nanba H, Ikenaka Y, Takahashi S, Sato M (2000) Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure 8(7):729–738PubMedCrossRefPubMedCentralGoogle Scholar
  65. Nigam VK, Arfi T, Kumar V, Shukla P (2017) Bioengineering of nitrilases towards its use as green catalyst: applications and perspectives. Indian J Microbiol 57(2):131–138PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nojiri M, Nakayama H, Odaka M, Yohda M, Takio K, Endo I (2000) Cobalt-substituted Fe-type nitrile hydratase of Rhodococcus sp. N-771. FEBS Lett 465(2–3):173–177PubMedCrossRefPubMedCentralGoogle Scholar
  67. O’mahony R, Doran J, Coffey L, Cahill OJ, Black GW, O’reilly C (2005) Characterisation of the nitrile hydratase gene clusters of Rhodococcus erythropolis strains AJ270 and AJ300 and Microbacterium sp. AJ115 indicates horizontal gene transfer and reveals an insertion of IS1166. Antonie Van Leeuwenhoek 87(3):221–232PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ohtaki A, Murata K, Sato Y, Noguchi K, Miyatake H, Dohmae N, Yamada K, Yohda M, Odaka M (2010) Structure and characterization of amidase from Rhodococcus sp. N-771: insight into the molecular mechanism of substrate recognition. Biochim Biophys Acta 1804(1):184–192PubMedCrossRefPubMedCentralGoogle Scholar
  69. Okamoto S, Eltis LD (2007) Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Mol Microbiol 65(3):828–838PubMedCrossRefPubMedCentralGoogle Scholar
  70. Osprian I, Fechter MH, Griengl H (2003) Biocatalytic hydrolysis of cyanohydrins: an efficient approach to enantiopure α-hydroxy carboxylic acids. J Mol Catal B Enzym 24:89–98CrossRefGoogle Scholar
  71. Pace HC, Brenner C (2001) The nitrilase superfamily: classification, structure and function. Genome Biol 2(1):reviews0001. 0001CrossRefGoogle Scholar
  72. Park JM, Sewell BT, Benedik MJ (2017) Cyanide bioremediation: the potential of engineered nitrilases. Appl Microbiol Biotechnol 101(8):3029–3042PubMedCrossRefPubMedCentralGoogle Scholar
  73. Pertsovich S, Guranda D, Podchernyaev D, Yanenko A, Svedas V (2005) Aliphatic amidase from Rhodococcus rhodochrous M8 is related to the nitrilase/cyanide hydratase family. Biochem Mosc 70(11):1280–1287CrossRefGoogle Scholar
  74. Pogorelova TE, Ryabchenko LE, Sunzov NI, Yanenko AS (1996) Cobalt-dependent transcription of the nitrile hydratase gene in Rhodococcus rhodochrous M8. FEMS Microbiol Lett 144(2–3):191–195CrossRefGoogle Scholar
  75. Prasad S, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28(6):725–741PubMedCrossRefPubMedCentralGoogle Scholar
  76. Prasad S, Misra A, Jangir VP, Awasthi A, Raj J, Bhalla TC (2007) A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World J Microbiol Biotechnol 23(3):345–353CrossRefGoogle Scholar
  77. Ramteke PW, Maurice NG, Joseph B, Wadher BJ (2013) Nitrile-converting enzymes: an eco-friendly tool for industrial biocatalysis. Biotechnol Appl Biochem 60(5):459–481PubMedCrossRefPubMedCentralGoogle Scholar
  78. Roach P, Ramsden D, Hughes J, Williams P (2003) Development of a conductimetric biosensor using immobilised Rhodococcus ruber whole cells for the detection and quantification of acrylonitrile. Biosens Bioelectron 19(1):73–78PubMedCrossRefPubMedCentralGoogle Scholar
  79. Roach P, Ramsden D, Hughes J, Williams P (2004) Biocatalytic scrubbing of gaseous acrylonitrile using Rhodococcus ruber immobilized in synthetic silicone polymer (ImmobaSil™) rings. Biotechnol Bioeng 85(4):450–455PubMedCrossRefPubMedCentralGoogle Scholar
  80. Rucká L, Volkova O, Pavlík A, Kaplan O, Kracík M, Nešvera J, Martínková L, Pátek M (2014) Expression control of nitrile hydratase and amidase genes in Rhodococcus erythropolis and substrate specificities of the enzymes. Antonie Van Leeuwenhoek 105(6):1179–1190PubMedCrossRefPubMedCentralGoogle Scholar
  81. Rzeznicka K, Schätzle S, Böttcher D, Klein J, Bornscheuer UT (2010) Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation. Appl Microbiol Biotechnol 85(5):1417–1425PubMedCrossRefPubMedCentralGoogle Scholar
  82. Sakai N, Tajika Y, Yao M, Watanabe N, Tanaka I (2004) Crystal structure of hypothetical protein PH0642 from Pyrococcus horikoshii at 1.6 Å resolution. Proteins 57(4):869–873PubMedCrossRefPubMedCentralGoogle Scholar
  83. Schmid A, Dordick J, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258PubMedCrossRefPubMedCentralGoogle Scholar
  84. Sun J, Yu H, Chen J, Luo H, Shen Z (2016a) Ammonium acrylate biomanufacturing by an engineered Rhodococcus ruber with nitrilase overexpression and double-knockout of nitrile hydratase and amidase. J Ind Microbiol Biotechnol 43(12):1631–1639PubMedCrossRefPubMedCentralGoogle Scholar
  85. Sun W, Zhu L, Chen X, Wu L, Zhou Z, Liu Y (2016b) The stability enhancement of nitrile hydratase from Bordetella petrii by swapping the C-terminal domain of β subunit. Appl Biochem Biotechnol 178(8):1481–1487PubMedCrossRefPubMedCentralGoogle Scholar
  86. Takihara H, Matsuura C, Ogihara J, Iwabuchi N, Sunairi M (2014) Rhodococcus rhodochrous ATCC12674 becomes alkane-tolerant upon GroEL2 overexpression and survives in the n-octane phase in two phase culture. Microbes Environ 29(4):431–433PubMedPubMedCentralCrossRefGoogle Scholar
  87. Tao Y, Han L, Li X, Han Y, Liu Z (2016) Molecular structure, spectroscopy (FT-IR, FT-Raman), thermodynamic parameters, molecular electrostatic potential and HOMO-LUMO analysis of 2, 6-dichlorobenzamide. J Mol Struct 1108:307–314CrossRefGoogle Scholar
  88. Thuku RN, Weber BW, Varsani A, Sewell BT (2007) Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J 274(8):2099–2108PubMedCrossRefPubMedCentralGoogle Scholar
  89. Thuku R, Brady D, Benedik M, Sewell B (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106(3):703–727PubMedCrossRefPubMedCentralGoogle Scholar
  90. Valiña ALB, Mazumder-Shivakumar D, Bruice TC (2004) Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate. Biochemistry 43(50):15657–15672PubMedCrossRefPubMedCentralGoogle Scholar
  91. Velankar H, Clarke KG, du Preez R, Cowan DA, Burton SG (2010) Developments in nitrile and amide biotransformation processes. Trends Biotechnol 28(11):561–569PubMedCrossRefPubMedCentralGoogle Scholar
  92. Veselá A, Franc M, Pelantová H, Kubáč D, Vejvoda V, Šulc M, Bhalla T, Macková M, Lovecká P, Janů P (2010) Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity. Biodegradation 21(5):761–770PubMedCrossRefPubMedCentralGoogle Scholar
  93. Veselá AB, Pelantová H, Šulc M, Macková M, Lovecká P, Thimová M, Pasquarelli F, Pičmanová M, Pátek M, Bhalla TC (2012) Biotransformation of benzonitrile herbicides via the nitrile hydratase–amidase pathway in rhodococci. J Ind Microbiol Biotechnol 39(12):1811–1819PubMedCrossRefPubMedCentralGoogle Scholar
  94. Wang M-X (2005) Enantioselective biotransformations of nitriles in organic synthesis. Top Catal 35(1–2):117–130CrossRefGoogle Scholar
  95. Xiaobo X, Jianping L, Peilin C (2006) Advances in the research and development of acrylic acid production from biomass1. Chin J Chem Eng 14(4):419–427CrossRefGoogle Scholar
  96. Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60(9):1391–1400PubMedPubMedCentralCrossRefGoogle Scholar
  97. Yoshida T, Mitsukura K, Mizutani T, Nakashima R, Shimizu Y, Kawabata H, Nagasawa T (2013) Enantioselective synthesis of (S)-2-cyano-2-methylpentanoic acid by nitrilase. Biotechnol Lett 35(5):685–688PubMedCrossRefPubMedCentralGoogle Scholar
  98. Yu H, Huang H (2014) Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol Adv 32(2):308–315PubMedCrossRefPubMedCentralGoogle Scholar
  99. Zhang L-B, Wang D-X, Wang M-X (2011) Microbial whole cell-catalyzed desymmetrization of prochiral malonamides: practical synthesis of enantioenriched functionalized carbamoylacetates and their application in the preparation of unusual α-amino acids. Tetrahedron 67(31):5604–5609CrossRefGoogle Scholar
  100. Zhou Z, Hashimoto Y, Shiraki K, Kobayashi M (2008) Discovery of posttranslational maturation by self-subunit swapping. Proc Natl Acad Sci USA 105(39):14849–14854PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Huimin Yu
    • 1
    • 2
    • 3
    Email author
  • Song Jiao
    • 1
    • 2
  • Miaomiao Wang
    • 1
    • 2
  • Youxiang Liang
    • 1
    • 2
  • Lingjun Tang
    • 1
    • 2
  1. 1.Department of Chemical EngineeringTsinghua UniversityBeijingChina
  2. 2.Key Laboratory of Industrial Biocatalysis, The Ministry of EducationTsinghua UniversityBeijingChina
  3. 3.Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina

Personalised recommendations