Advertisement

Degradation of Alkanes in Rhodococcus

  • Martina CappellettiEmail author
  • Stefano Fedi
  • Davide Zannoni
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 16)

Abstract

Alkanes are widely distributed in the environment as they not only constitute the large fraction of crude oil but are also produced by many living organisms. They are saturated hydrocarbons of different sizes and structures, which pose a variety of challenges to degradative microorganisms due to their physicochemical properties, i.e., the extremely limited solubility and the high energy required for activation. The hydrophobic cell surface of Rhodococcus spp., the ability to produce biosurfactants, and the possession of a wide range of oxygenases allow coping with such challenges. In particular, monooxygenase enzymes are involved in the activation of alkanes by converting them into alcohols, which undergo a series of oxidation steps before being converted to fatty acids. Rhodococcus alkane monooxygenases belong to different families (i.e., AlkB-like monooxygenase, soluble di-iron monooxygenase, cytochrome P450), have different genetic organization, and are subject to different regulatory mechanisms, which are poorly known. Because of their long-term survival capacity, broad catabolic abilities, and effective contact mechanisms with hydrocarbon molecules, alkanotrophic Rhodococcus strains have biotechnology applications and potential in bioremediation and biotransformation reactions.

Keywords

Alkanes Rhodococcus Alkane monooxygenase Alkane hydroxylase Cometabolism Bioremediation 

References

  1. Acosta-González A, Martirani-von Abercron SM, Rosselló-Móra R, Wittich RM, Marqués S (2016) The effect of oil spills on the bacterial diversity and catabolic function in coastal sediments: a case study on the Prestige oil spill. Environ Sci Pollut Res Int 22:15200–15214.  https://doi.org/10.1007/s11356-015-4458-yCrossRefGoogle Scholar
  2. Alvarez HM (2003) Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeterior Biodegr 52:35–42.  https://doi.org/10.1016/S0964-8305(02)00120-8CrossRefGoogle Scholar
  3. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386.  https://doi.org/10.1007/s002030050341CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alvarez HM, Silva RA, Herrero M, Hernández MA, Villalba MS (2013) Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. J Mol Biochem 2:2119–2130.  https://doi.org/10.1007/s00253-012-4360-1CrossRefGoogle Scholar
  5. Amouric A, Quéméneur M, Grossi V, Liebgott PP, Auria R, Casalot L (2010) Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete. J Appl Microbiol 108:1903–1916.  https://doi.org/10.1111/j.1365-2672.2009.04592.xCrossRefPubMedGoogle Scholar
  6. Andreoni V, Bernasconi S, Colombo M, van Beilen JB, Cavalca L (2000) Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ Microbiol 2:572–577. http://doi.org/0.1046/j.1462-2920.2000.00134.xCrossRefGoogle Scholar
  7. Ashraf W, Murrell JC (1990) Purification and characterization of a NAD+-dependent secondary alcohol dehydrogenase from propane-grown Rhodococcus rhodochrous PNKb1. Arch Microbiol 153:163–168CrossRefGoogle Scholar
  8. Ashraf W, Murrell JC (1992) Genetic, biochemical and immunological evidence for the involvement of two alcohol dehydrogenases in the metabolism of propane by Rhodococcus rhodochrous PNKb1. Arch Microbiol 157:488–492Google Scholar
  9. Ashraf W, Mihdhir A, Murrell JC (1994) Bacterial oxidation of propane. FEMS Microbiol Lett 122:1–6CrossRefGoogle Scholar
  10. Babu J, Brown L (1984) New type of oxygenase involved in the metabolism of propane and isobutane. Appl Environ Microbiol 48:260–264PubMedPubMedCentralGoogle Scholar
  11. Binazadeh M, Karimi IA, Li Z (2009) Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449. Enzym Microb Technol 45:195–202.  https://doi.org/10.1016/j.enzmictec.2009.06.001CrossRefGoogle Scholar
  12. Bouchez-Naïtali M, Blanchet D, Bardin V, Vandecasteele JP (2001) Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology (Reading, England) 147:2537–2543.  https://doi.org/10.1099/00221287-147-9-2537CrossRefGoogle Scholar
  13. Bredholt H, Josefsen K, Vatland A, Brunheim P, Eimhjellen K (1998) Emulsification of crude oil by an alkane-oxidizing Rhodococcus species isolated from seawater. Can J Microbiol 44:330–340.  https://doi.org/10.1139/w98-005CrossRefGoogle Scholar
  14. Cappelletti M, Fedi S, Frascari D et al (2011) Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes. Appl Environ Microbiol 77:1619–1627.  https://doi.org/10.1128/AEM.01987-10CrossRefPubMedGoogle Scholar
  15. Cappelletti M, Frascari D, Zannoni D, Fedi S (2012) Microbial degradation of chloroform. Appl Microbiol Biotechnol 96:1395–1409.  https://doi.org/10.1007/s00253-012-4494-1CrossRefPubMedGoogle Scholar
  16. Cappelletti M, Di Gennaro P, D’Ursi P, Orro A, Mezzelani A, Landini M, Fedi S, Frascari D, Presentato A, Zannoni D, Milanesi L (2013) Genome sequence of Rhodococcussp. strain BCP1, a biodegrader of alkanes and chlorinated compounds. Genome Announc 9:75.  https://doi.org/10.1128/genomeA.00657-13CrossRefGoogle Scholar
  17. Cappelletti M, Presentato A, Milazzo G, Turner RJ, Fedi S, Frascari D, Zannoni D (2015) Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes. Front Microbiol 6:393.  https://doi.org/10.3389/fmicb.2015.00393CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cappelletti M, Fedi S, Zampolli J, Di Canito A, D’Ursi P, Orro A, Viti C, Milanesi L, Zannoni D, Di Gennaro P (2016) Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7. Res Microbiol 1(9).  https://doi.org/10.1016/j.resmic.2016.06.008CrossRefGoogle Scholar
  19. Cappelletti M, Frascari D, Pinelli D, Mezzetti F, Fedi S, Zannoni D (2017a) Aerobic cometabolism of 1,1,2,2-TeCA by a propane-growing microbial consortium (C2): diversity of alkane monooxygenase genes and design of an on-site bioremediation process. Int Biodeterior Biodegr 119:649–660.  https://doi.org/10.1016/j.ibiod.2016.09.019CrossRefGoogle Scholar
  20. Cappelletti M, Pinelli D, Fedi S, Zannoni D, Frascari D (2017b) Aerobic co-metabolism of 1,1,2,2-tetrachloroethane by Rhodococcus aetherivorans TPA grown on propane: kinetic study and bioreactor configuration analysis. J Chem Technol Biotechnol 30:2420–2411.  https://doi.org/10.1002/jctb.5335CrossRefGoogle Scholar
  21. Cardini G, Jurtshuk P (1970) The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7E1C. J Biol Chem 245:2789–2796PubMedGoogle Scholar
  22. Castro AR, Rocha I, Alves MM, Pereira MA (2016) Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. AMB Express 6:35.  https://doi.org/10.1186/s13568-016-0207-yCrossRefPubMedPubMedCentralGoogle Scholar
  23. Ciavarelli R, Cappelletti M, Fedi S, Pinelli D, Frascari D (2012) Chloroform aerobic cometabolism by butane-growing Rhodococcus aetherivorans BCP1 in continuous-flow biofilm reactors. Bioprocess Biosyst Eng 35:667–681.  https://doi.org/10.1007/s00449-011-0647-3CrossRefPubMedGoogle Scholar
  24. Coleman NV, Bui NB, Holmes AJ (2006) Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 8:1228–1239.  https://doi.org/10.1111/j.1462-2920.2006.01015.xCrossRefPubMedGoogle Scholar
  25. Coleman NV, Yau S, Wilson NL, Nolan LM, Migocki MD, Ly MA, Crossett B, Holmes AJ (2011) Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader. Environ Microbiol Rep 3:297–307.  https://doi.org/10.1111/j.1758-2229.2010.00225.xCrossRefPubMedGoogle Scholar
  26. Cortes M, de Carvalho C (2015) Effect of carbon sources on lipid accumulation in Rhodococcus cells. Biochem Eng J 94:100–105.  https://doi.org/10.1016/j.bej.2014.11.017CrossRefGoogle Scholar
  27. de Carvalho CC, Parreño-Marchante B, Neumann G, da Fonseca MM, Heipieper HJ (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol 67:383–388.  https://doi.org/10.1007/s00253-004-1750-zCrossRefPubMedPubMedCentralGoogle Scholar
  28. Di Gennaro P, Zampolli J, Presti I, Cappelletti M, D'Ursi P, Orro A, Mezzelani A, Milanesi L (2014) Genome sequence of Rhodococcus opacus strain R7, a biodegrader of mono- and polycyclic aromatic hydrocarbons. Genome Announc 2:e00827–e00814.  https://doi.org/10.1128/genomeA.00827-14CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ekprasert J (2014) Functional characterisation of alkane-degrading monooxygenases in Rhodococcus jostii strain 8. Doctoral thesis, University of East AngliaGoogle Scholar
  30. Fournier D, Hawari J, Halasz A, Streger SH, McClay KR, Masuda H, Hatzinger PB (2009) Aerobic biodegradation of N-nitrosodimethylamine by the propanotroph Rhodococcus ruber ENV425. Appl Environ Microbiol 75:5088–5093.  https://doi.org/10.1128/AEM.00418-09CrossRefGoogle Scholar
  31. Frascari D, Pinelli D, Nocentini M, Fedi S, Pii Y, Zannoni D (2006) Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1. Appl Microbiol Biotechnol 73:421–428.  https://doi.org/10.1007/s00253-006-0433-3CrossRefPubMedGoogle Scholar
  32. Frascari D, Pinelli D, Nocentini M, Baleani E, Cappelletti M, Fedi S (2008) A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp PB1. Biochem Eng J 42:139–147.  https://doi.org/10.1016/j.bej.2008.06.011CrossRefGoogle Scholar
  33. Furuya T, Hirose S, Semba H, Kino K (2011) Identification of the regulator gene responsible for the acetone-responsive expression of the binuclear iron monooxygenase gene cluster in Mycobacteria. J Bacteriol 193:5817–5823.  https://doi.org/10.1128/JB.05525-11CrossRefPubMedPubMedCentralGoogle Scholar
  34. Furuya T, Hayashi M, Semba H, Kino K (2013) The mycobacterial binuclear iron monooxygenases require a specific chaperonin-like protein for functional expression in a heterologous host. FEBS J 280:817–826.  https://doi.org/10.1111/febs.12070CrossRefPubMedGoogle Scholar
  35. Habib S, Ahmad SA, Johari WLW, Shukor MYA, Alias SA, Khalil KA, Yasid NA (2018) Evaluation of conventional and response surface level optimisation of n-dodecane (n-C12) mineralisation by psychrotolerant strains isolated from pristine soil at Southern Victoria Island, Antarctica. Microb Cell Factories 17:44.  https://doi.org/10.1186/s12934-018-0889-8CrossRefGoogle Scholar
  36. Hamamura N, Olson SH, Ward DM, Inskeep WP (2006) Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl Environ Microbiol 72:6316–6324.  https://doi.org/10.1128/AEM.01015-06CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hamamura N, Fukui M, Ward DM, Inskeep WP (2008) Assessing soil microbial populations responding to crude-oil amendment at different temperatures using phylogenetic, functional gene (alkB) and physiological analyses. Environ Sci Technol 42:7580–7586.  https://doi.org/10.1021/es800030fCrossRefPubMedGoogle Scholar
  38. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems-biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344.  https://doi.org/10.1016/j.bbagen.2006.07.017CrossRefPubMedGoogle Scholar
  39. Hassanshahian M, Ahmadinejad M, Tebyanian H, Kariminik A (2013) Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Mar Pollut Bull 73:300–305.  https://doi.org/10.1016/j.marpolbul.2013.05.002CrossRefPubMedGoogle Scholar
  40. Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9:600.  https://doi.org/10.1186/1471-2164-9-600CrossRefPubMedPubMedCentralGoogle Scholar
  41. Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach AL, Ghiviriga I, Dancel C, Abeel T, Gevers D, Kodira CD, Desany B, Affourtit JP, Birren BW, Sinskey AJ (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7:e1002219.  https://doi.org/10.1371/journal.pgen.1002219CrossRefPubMedPubMedCentralGoogle Scholar
  42. Holmes AJ, Coleman NV (2008) Evolutionary ecology and multidisciplinary approaches to prospecting for monooxygenases as biocatalysts. Antonie Van Leeuwenhoek 94:75–84.  https://doi.org/10.1007/s10482-008-9227-1CrossRefPubMedGoogle Scholar
  43. Hommel RK (1990) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biosurfactants in hydrocarbon utilization. Biodegradation 1:107–119CrossRefGoogle Scholar
  44. Hua F, Wang HQ (2014) Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms. Biotechnol Biotechnol Equip 28:165–175.  https://doi.org/10.1080/13102818.2014.906136CrossRefPubMedPubMedCentralGoogle Scholar
  45. Huang L, Ma T, Li D, Liang FL, Liu RL, Li GQ (2008) Optimization of nutrient component for diesel oil degradation by Rhodococcus erythropolis. Mar Pollut Bull 56:1714–1718.  https://doi.org/10.1016/j.marpolbul.2008.07.007CrossRefPubMedGoogle Scholar
  46. Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, Uchiyama H, Nomura N (2013) Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Appl Environ Microbiol 79:7082–7090.  https://doi.org/10.1128/AEM.01664-13CrossRefPubMedPubMedCentralGoogle Scholar
  47. Iwabuchi N, Sharma PK, Sunairi M et al (2009) Role of interfacial tensions in the translocation of Rhodococcus erythropolis during growth in a two phase culture. Environ Sci Technol 43:8290–8294.  https://doi.org/10.1021/es901208sCrossRefPubMedGoogle Scholar
  48. Ji Y, Mao G, Wang Y, Bartlam M (2013) Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Front Microbiol 4:58.  https://doi.org/10.3389/fmicb.2013.00058CrossRefPubMedPubMedCentralGoogle Scholar
  49. Jurelevicius D, Alvarez VM, Peixoto R et al (2013) The Use of a combination of alkB primers to better characterize the distribution of alkane-degrading bacteria. PLoS One 8:e66565.  https://doi.org/10.1371/journal.pone.0066565CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kim IS, Foght JM, Gray MR (2002) Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He. Biotechnol Bioeng 80:650–659.  https://doi.org/10.1002/bit.10421CrossRefGoogle Scholar
  51. Kloos K, Munch JC, Schloter M (2006) A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. J Microbiol Methods 66:486–496.  https://doi.org/10.1016/j.mimet.2006.01.014CrossRefPubMedGoogle Scholar
  52. Koch DJ, Chen MM, van Beilen JB, Arnold FH (2009) In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6. Appl Environ Microbiol 75:337–344.  https://doi.org/10.1128/AEM.01758-08CrossRefPubMedGoogle Scholar
  53. Kohno T, Sugimoto Y, Sei K, Mori K (2002) Design of PCR primers and gene probes for general detection of alkane-degrading bacteria. Microbes Environ 17:114–121.  https://doi.org/10.1264/jsme2.17.114CrossRefGoogle Scholar
  54. Kolouchová I, Schreiberová O, Masák J, Sigler K, Řezanka T (2012) Structural analysis of mycolic acids from phenol-degrading strain of Rhodococcus erythropolis by liquid chromatography–tandem mass spectrometry. Folia Microbiol (Praha) 57:473–483.  https://doi.org/10.1007/s12223-012-0156-zCrossRefGoogle Scholar
  55. Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128.  https://doi.org/10.1128/JB.185.24.7120-7128.2003CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y (2006) Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 102:184–192.  https://doi.org/10.1263/jbb.102.184CrossRefPubMedGoogle Scholar
  57. Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on normal-alkanes. Appl Environ Microbiol 44:864–870PubMedPubMedCentralGoogle Scholar
  58. Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Asp Med 26:459–516.  https://doi.org/10.1016/j.mam.2005.10.001CrossRefGoogle Scholar
  59. Kubota M, Nodate M, Yasumoto-Hirose M, Uchiyama T, Kagami O, Shizuri Y, Misawa N (2005) Isolation and functional analysis of cytochrome P450 CYP153A genes from various environments. Biosci Biotechnol Biochem 69:2421–2430.  https://doi.org/10.1271/bbb.69.2421CrossRefPubMedGoogle Scholar
  60. Kunihiro N, Haruki M, Takano K, Morikawa M, Kanaya S (2005) Isolation and characterization of Rhodococcus sp. strains TMP2 and T12 that degrade 2,6,10,14-tetramethylpentadecane (pristane) at moderately low temperatures. J Biotechnol 115:129–136.  https://doi.org/10.1016/j.jbiotec.2004.07.018CrossRefPubMedGoogle Scholar
  61. Kuyukina MS, Ivshina IB, Rychkova MI, Chumakov OB (2000) Effect of cell lipid composition on the formation of nonspecific antibiotic resistance in alkanotrophic rhodococci. Microbiology 69:62–69.  https://doi.org/10.1007/BF02757257CrossRefGoogle Scholar
  62. Kuyukina MS, Ivshina IB, Baeva TA, Kochina OA, Gein SV, Chereshnev VA (2015) Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnol 32:559–568.  https://doi.org/10.1016/j.nbt.2015.03.006CrossRefGoogle Scholar
  63. Laczi K, Kis Á, Horváth B, Maróti G, Hegedüs B, Perei K, Rákhely G (2015) Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol 99:9745–9759.  https://doi.org/10.1007/s00253-015-6936-zCrossRefPubMedGoogle Scholar
  64. Lanfranconi MP, Alvarez HM (2017) Rewiring neutral lipids production for the de novo synthesis of wax esters in Rhodococcus opacus PD630. J Biotechnol 260:67–73.  https://doi.org/10.1016/j.jbiotec.2017.09.009CrossRefPubMedGoogle Scholar
  65. Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek 74:59–70.  https://doi.org/10.1023/A:1001799711799CrossRefPubMedGoogle Scholar
  66. Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16:282–290.  https://doi.org/10.1016/j.copbio.2005.04.007CrossRefPubMedPubMedCentralGoogle Scholar
  67. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315PubMedPubMedCentralGoogle Scholar
  68. Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479.  https://doi.org/10.1016/S0168-6445(03)00023-8CrossRefPubMedGoogle Scholar
  69. Lee EH, Kim J, Cho KS, Ahn YG, Hwang GS (2010) Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ Sci Pollut Res Int 17:64–77.  https://doi.org/10.1007/s11356-009-0238-xCrossRefPubMedGoogle Scholar
  70. Liang J-L, Nie Y, Wang M, Xiong G, Wang Y-P, Maser E, Wu X-L (2016a) Regulation of alkane degradation pathway by a TetR family repressor via an autoregulation positive feedback mechanism in a Gram-positive Dietzia bacterium. Mol Microbiol 99:338–359.  https://doi.org/10.1111/mmi.13232CrossRefPubMedGoogle Scholar
  71. Liang J-L, JiangYang J-H, Nie Y, Wu X-L (2016b) Regulation of the alkane hydroxylase CYP153 gene in a gram-positive alkane-degrading bacterium, Dietzia sp. strain DQ12-45-1b. Appl Environ Microbiol 82:608–619.  https://doi.org/10.1128/AEM.02811-15CrossRefPubMedPubMedCentralGoogle Scholar
  72. Likhoshvay A, Lomakina A, Grachev M (2014) The complete alk sequences of Rhodococcus erythropolis from Lake Baikal. SpringerPlus 3:621.  https://doi.org/10.1186/2193-1801-3-621CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ludwig B, Akundi A, Kendall K (1995) A long-chain secondary alcohol dehydrogenase from Rhodococcus erythropolis ATCC 4277. Appl Environ Microbiol 61:3729–3733PubMedPubMedCentralGoogle Scholar
  74. Luz AP, Pellizari VH, Whyte LG, Greer CW (2004) A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50:323–333.  https://doi.org/10.1139/w04-008CrossRefPubMedPubMedCentralGoogle Scholar
  75. MacMichael G, Brown L (1987) Role of carbon dioxide in catabolism of propane by ‘Nocardia parafinicum’ (Rhodococcus rhodochrous). Appl Environ Microbiol 53:65–69PubMedPubMedCentralGoogle Scholar
  76. Malachowsky KJ, Phelps TJ, Teboli AB, Minnikin DE, White DC (1994) Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl Environ Microbiol 60:542–548.Google Scholar
  77. Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092.  https://doi.org/10.1128/AEM.69.6.3085-3092.2003CrossRefPubMedPubMedCentralGoogle Scholar
  78. McCarl V, Somerville MV, Ly MA, Henry R, Liew EF, Wilson NL, Holmes A, Coleman N (2018) Heterologous expression of alkene monooxygenases from Mycobacterium in Gram positive and Gram negative bacterial hosts. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.00397-18
  79. McDermott C, Heffron JJ (2013) Toxicity of industrially relevant chlorinated organic solvents in vitro. Int J Toxicol 32:136–145.  https://doi.org/10.1177/1091581813482006CrossRefPubMedGoogle Scholar
  80. McDonald IR, Uchiyama H, Kambe S, Yagi O, Murrell JC (1997) The soluble methane monooxygenase gene cluster of the trichloroethylene-degrading methanotroph Methylocystis sp. strain M. Appl Environ Microbiol 63:1898–1904PubMedPubMedCentralGoogle Scholar
  81. McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. PNAS 103:15582–15587.  https://doi.org/10.1073/pnas.0607048103CrossRefPubMedPubMedCentralGoogle Scholar
  82. Mikolasch A, Omirbekova A, Schumann P, Reinhard A, Sheikhany H, Berzhanova R, Mukasheva T, Schauer F (2015) Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan. Appl Microbiol Biotechnol 99:4071–4084.  https://doi.org/10.1007/s00253-014-6320-4CrossRefPubMedGoogle Scholar
  83. Nakajima K, Sato A, Takahara Y, Iida T (1985) Microbial oxidation of isoprenoid alkanes, phytane, norpristane and farnesane. Agric Biol Chem 49:1993–2002Google Scholar
  84. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166PubMedPubMedCentralGoogle Scholar
  85. Nhi-Cong LT, Mikolasch A, Klenk H-P, Schauer F (2009) Degradation of the multiple branched alkane 2,6,10,14-tetramethyl-pentadecane(pristane) in Rhodococcus ruber and Mycobacterium neoaurum. Int Biodeter Biodegr 63:201–207.  https://doi.org/10.1016/j.ibiod.2008.09.002CrossRefGoogle Scholar
  86. Nie Y, Chi C-Q, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 4:4968.  https://doi.org/10.1038/srep04968CrossRefPubMedPubMedCentralGoogle Scholar
  87. Orro A, Cappelletti M, D’Ursi P, Milanesi L, Di Canito A, Zampolli J, Collina E, Decorosi F, Viti C, Fedi S, Presentato A, Zannoni D, Di Gennaro P (2015) Genome and Phenotype Microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: genetic determinants and metabolic abilities with environmental relevance. PLoS One 10:e0139467.  https://doi.org/10.1371/journal.pone.0139467.s025CrossRefPubMedPubMedCentralGoogle Scholar
  88. Panicker G, Mojib N, Aislabie J, Bej AK (2010) Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Antonie Van Leeuwenhoek 97:275–287.  https://doi.org/10.1007/s10482-009-9408-6CrossRefPubMedGoogle Scholar
  89. Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611.  https://doi.org/10.1111/j.1365-2672.2006.03267.xCrossRefPubMedGoogle Scholar
  90. Pirog TP, Korzh YV, Shevchuk TA, Tarasenko DA (2008) Peculiarities of C2 metabolism and intensification of the synthesis of surface-active substances in Rhodococcus erythropolis EK-1 grown in ethanol. Microbiology 77:665–673.  https://doi.org/10.1134/S0026261708060039CrossRefGoogle Scholar
  91. Quatrini P, Scaglione G, De Pasquale C, Riela S, Puglia AM (2008) Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J Appl Microbiol 104:251–259.  https://doi.org/10.1111/j.1365-2672.2007.03544.xCrossRefPubMedGoogle Scholar
  92. Rapp P, Gabriel-Jürgens LH (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 149:2879–28790.  https://doi.org/10.1099/mic.0.26188-0CrossRefPubMedGoogle Scholar
  93. Riebel A, Dudek HM, de Gonzalo G, Stepniak P, Rychlewski L, Fraaije MW (2012) Expanding the set of rhodococcal Baeyer-Villiger monooxygenases by high-throughput cloning, expression and substrate screening. Appl Microbiol Biotechnol 95:1479–1489.  https://doi.org/10.1007/s00253-011-3823-0CrossRefPubMedPubMedCentralGoogle Scholar
  94. Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490.  https://doi.org/10.1111/j.1462-2920.2009.01948.xCrossRefPubMedGoogle Scholar
  95. Saeki H, Furuhashi K (1994) Cloning and characterization of a Nocardia corallina B-276 gene cluster encoding alkene monooxygenase. J Biosci Bioeng 78:399–406.  https://doi.org/10.1016/0922-338X(94)90037-XCrossRefGoogle Scholar
  96. Sameshima Y, Honda K, Kato J, Omasa T, Ohtake H (2008) Expression of Rhodococcus opacus alkB genes in anhydrous organic solvents. J Biosci Bioeng 106:199–203.  https://doi.org/10.1263/jbb.106.199CrossRefGoogle Scholar
  97. Schenkels P, Duine JA (2000) Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069: an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the interconversion of alcohols and aldehydes. Microbiology 146:775–785.  https://doi.org/10.1099/00221287-146-4-775CrossRefPubMedGoogle Scholar
  98. Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, Tajima T, Sekigawa T, Kosugi H, Matsuo Y, Nishiko R, Imamura K, Ito M, Narita H, Tago S, Fujita N, Harayama S (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8(2):334–346.  https://doi.org/10.1111/j.1462-2920.2005.00899.xCrossRefPubMedGoogle Scholar
  99. Semprini L, Dolan ME, Hopkins GD, McCarty PL (2009) Bioaugmentation with butane-utilizing microorganisms to promote in situ cometabolic treatment of 1,1,1-trichloroethane and 1,1-dichloroethene. J Contam Hydrol 103(3–4):157–167.  https://doi.org/10.1016/j.jconhyd.2008.10.005CrossRefPubMedGoogle Scholar
  100. Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemist 33:12787–12794CrossRefGoogle Scholar
  101. Shanklin J, Achim C, Schmidt H, Fox BG, Münck E (1997) Mössbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc Natl Acad Sci USA 94:2981–2986.  https://doi.org/10.1073/pnas.94.7.2981CrossRefPubMedGoogle Scholar
  102. Sharma SL, Pant A (2000) Biodegradation and conversion of alkanes and crude oil by a marine Rhodococcus. Biodegradation 11(5):289–294.  https://doi.org/10.1023/A:1011185806974CrossRefPubMedGoogle Scholar
  103. Sharp JO, Sales CM, LeBlanc JC, Liu J, Wood TK, Eltis LD, Mohn WW, Alvarez-Cohen L (2007) An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 73:6930–6938.  https://doi.org/10.1128/AEM.01697-07CrossRefPubMedPubMedCentralGoogle Scholar
  104. Shennan JL (2006) Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. J Chem Technol Biotechnol 81:237–256.  https://doi.org/10.1002/jctb.1388CrossRefGoogle Scholar
  105. Sluis MK, Sayavedra-Soto LA, Arp DJ (2002) Molecular analysis of the soluble butane monooxygenase from “Pseudomonas butanovora”. Microbiology 148:3617–3629.  https://doi.org/10.1099/00221287-148-11-3617CrossRefPubMedGoogle Scholar
  106. Smits THM, Röthlisberger M, Witholt B, van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1:307–317.  https://doi.org/10.1046/j.1462-2920.1999.00037.xCrossRefPubMedGoogle Scholar
  107. Smits THM, Balada SB, Witholt B, van Beilen JB (2002) Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol 184:1733–1742.  https://doi.org/10.1128/JB.184.6.1733-1742.2002CrossRefPubMedPubMedCentralGoogle Scholar
  108. Sokolovská I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027.  https://doi.org/10.1128/AEM.69.12.7019-7027.2003CrossRefPubMedPubMedCentralGoogle Scholar
  109. Stancu MM (2015) Response of Rhodococcus erythropolis strain IBBPo1 to toxic organic solvents. Braz J Microbiol 46:1009–1018.  https://doi.org/10.1590/S1517-838246420140462CrossRefPubMedPubMedCentralGoogle Scholar
  110. Stratton HM, Brooks PR, Carr EL, Seviour RJ (2003) Effects of culture conditions on the mycolic acid composition of isolates of Rhodococcus spp. from activated sludge foams. Syst Appl Microbiol 26:165–171.  https://doi.org/10.1078/072320203322345994CrossRefPubMedGoogle Scholar
  111. Stroud JL, Paton GI, Semple KT (2007) Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol 102:1239–1253.  https://doi.org/10.1111/j.1365-2672.2007.03401.xCrossRefPubMedGoogle Scholar
  112. Takei D, Washio K, Morikawa M (2008) Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane. Biotechnol Lett 30:1447–1452.  https://doi.org/10.1007/s10529-008-9710-9CrossRefPubMedGoogle Scholar
  113. Táncsics A, Benedek T, Szoboszlay S, Veres PG, Farkas M, Máthé I, Márialigeti K, Kukolya J, Lányi S, Kriszt B (2015) The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus. Syst Appl Microbiol 38:1–7.  https://doi.org/10.1016/j.syapm.2014.10.010CrossRefPubMedGoogle Scholar
  114. Tao L, Wagner LW, Rouvière PE, Cheng Q (2006) Metabolic engineering for synthesis of aryl carotenoids in Rhodococcus. Appl Microbiol Biotechnol 70:222–228.  https://doi.org/10.1007/s00253-005-0064-0CrossRefPubMedGoogle Scholar
  115. van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21.  https://doi.org/10.1007/s00253-006-0748-0CrossRefPubMedGoogle Scholar
  116. van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630.  https://doi.org/10.1099/00221287-147-6-1621CrossRefPubMedGoogle Scholar
  117. van Beilen JB, Neuenschwander M, Smits TH, Roth C, Balada SB, Witholt B (2002a) Rubredoxins involved in alkane oxidation. J Bacteriol 184:1722–1732.  https://doi.org/10.1128/JB.184.6.1722-1732.2002CrossRefPubMedPubMedCentralGoogle Scholar
  118. van Beilen JB, Smits TH, Whyte LG, Schorcht S, Röthlisberger M, Plaggemeier T, Engesser KH, Witholt B (2002b) Alkane hydroxylase homologues in Gram-positive strains. Environ Microbiol 4:676–682.  https://doi.org/10.1046/j.1462-2920.2002.00355.xCrossRefPubMedGoogle Scholar
  119. van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. OGST 58:427–440.  https://doi.org/10.2516/ogst:2003026CrossRefGoogle Scholar
  120. van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65.  https://doi.org/10.1128/AEM.72.1.59-65.2006CrossRefPubMedPubMedCentralGoogle Scholar
  121. Viggor S, Jõesaar M, Vedler E, Kiiker R, Pärnpuu L, Heinaru A (2015) Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water. Mar Pollut Bull 101:507–516.  https://doi.org/10.1016/j.marpolbul.2015.10.064CrossRefPubMedGoogle Scholar
  122. Vomberg A, Klinner U (2000) Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89:339–348.  https://doi.org/10.1046/j.1365-2672.2000.01121.xCrossRefPubMedGoogle Scholar
  123. Wang B, Chu KH (2017) Cometabolic biodegradation of 1,2,3-trichloropropane by propane-oxidizing bacteria. Chemosphere 168:1494–1497.  https://doi.org/10.1016/j.chemosphere.2016.12.007CrossRefPubMedGoogle Scholar
  124. Warhust AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73CrossRefGoogle Scholar
  125. Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:REVIEWS3003.  https://doi.org/10.1186/gb-2000-1-6-reviews3003CrossRefPubMedPubMedCentralGoogle Scholar
  126. Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584PubMedPubMedCentralGoogle Scholar
  127. Whyte LG, Slagman SJ, Pietrantonio F et al (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968PubMedPubMedCentralGoogle Scholar
  128. Whyte LG, Schultz A, van Beilen JB et al (2002a) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150.  https://doi.org/10.1111/j.1574-6941.2002.tb00975.xCrossRefPubMedPubMedCentralGoogle Scholar
  129. Whyte LG, Smits THM, Labbé D, Witholt B, Greer CW, van Beilen JB (2002b) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942.  https://doi.org/10.1128/AEM.68.12.5933-5942.2002CrossRefPubMedPubMedCentralGoogle Scholar
  130. Woods BN, Murrell JC (1989) The metabolism of propane in Rhodococcus vhohchvous PNKbl. J Gen Microbiol 135:2335–2344Google Scholar
  131. Yakimov MM, Giuliano L, Bruni V, Scarfì S, Golyshin PN (1999) Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol 22:249–256PubMedGoogle Scholar
  132. Yamashita S, Satoi M, Iwasa Y, Honda K, Sameshima Y, Omasa T, Kato J, Ohtake H (2007) Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents. Appl Microbiol Biotechnol 74:761–767.  https://doi.org/10.1007/s00253-006-0729-3CrossRefGoogle Scholar
  133. Yang HY, Jia RB, Chen B, Li L (2014) Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Environ Sci Pollut Res Int 21:11086–11093.  https://doi.org/10.1007/s11356-014-3027-0CrossRefPubMedGoogle Scholar
  134. Yuste L, Corbella ME, Turiégano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32:69–75.  https://doi.org/10.1111/j.1574-6941.2000.tb00700.xCrossRefPubMedGoogle Scholar
  135. Zampolli J, Collina E, Lasagni M, Di Gennaro P (2014) Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism. AMB Express 4:73.  https://doi.org/10.1186/s13568-014-0073-4CrossRefPubMedPubMedCentralGoogle Scholar
  136. Zheng YT, Toyofuku M, Nomura N, Shigeto S (2013) Correlation of carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74. Anal Chem 85:7295–7301.  https://doi.org/10.1021/ac401188fCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martina Cappelletti
    • 1
    Email author
  • Stefano Fedi
    • 1
  • Davide Zannoni
    • 1
  1. 1.Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly

Personalised recommendations